Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T13:01:24.219Z Has data issue: false hasContentIssue false

Remote Sensing of the Zodiacal Cloud along Secants to Earth’s Orbit

Published online by Cambridge University Press:  12 April 2016

René Dumont
Affiliation:
Observatoire de Bordeaux B.P. 21, F-33270 Floirac, France
Anny-Chantal Levasseur-Regourd
Affiliation:
Service d’Aéronomie du C.N.R.S. B.P. 3, F-91370 Verrières-Le-Buisson, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Partial but significant localization along the line of sight (l.o.s.) of the contributions to the integrated zodiacal brightness can be achieved, without recourse to rash physical assumptions, if we focus on the two intersections between the l.o.s. and the terrestrial orbit. Then, there exists on the l.o.s. two other points or “nodes”, the contributions of which can be retrieved with outstandingly low uncertainty. The photometric results at these nodes (heliocentric change of scattering efficiency, backscattering phase function etc.) are highly reminiscent of previously ascertained features, and they encourage extensions to the polarimetric, the spectrometric and the radiometric cases. The salient results are, respectively: a positive radial gradient of local polarization degree; orbital velocities in excess over the keplerian ones, at least outside the earth’s orbit; the derivation of local temperatures from IRAS data.

Type
IV. Optical Studies of Dust
Copyright
Copyright © Reidel 1985

References

Dumont, R. 1973, Planet. Space Sci. 21, 2149.Google Scholar
Dumont, R. 1983, Planet. Space Sci. 31, 1381.Google Scholar
Dumont, R., Levasseur-Regourd, A.C. 1984, Planet. Space Sci., in press.Google Scholar
Dumont, R., Pelletanne, B. 1981, C.R. Acad. Sci. Paris 293 II, 377.Google Scholar
Dumont, R., Sánchez, F. 1975, Astron. Astrophys. 38, 405.Google Scholar
East, I.R., Reay, N.K. 1984, Astron. Astrophys., in press.Google Scholar
Fechtig, H. et al. 1981, Landolt-Börnstein Neue Serie VI 2 a, 228.Google Scholar
Fried, J.W. 1978, Astron. Astrophys. 68, 259.Google Scholar
Giese, R.H. 1968, ESRO Scientific Note 41.Google Scholar
Hauser, M.G. et al. 1984, Astrophys. J. 278 L15.Google Scholar
James, J.F., Smeethe, M.J. 1970, Nature 227, 589.Google Scholar
Leinert, C. et al. 1976, Astron. Astrophys. 47, 221.Google Scholar
Leinert, C. et al. 1981, Astron. Astrophys. 103, 177.Google Scholar
Levasseur-Regourd, A.C., Dumont, R. 1980, Astron. Astrophys. 84, 277.Google Scholar
Levasseur-Regourd, A.C., Dumont, R. 1984, C.R. Acad. Sci. P., in press.Google Scholar
Mujica, A. et al. 1980, Planet. Space Sci. 28, 657.Google Scholar
Pelletanne, B. 1982, Thesis, Univ. Bordeaux.Google Scholar
Reay, N.K., Ring, J. 1968, Nature 219, 710.CrossRefGoogle Scholar
Schuerman, D.W. 1979, Planet. Space Sci. 27, 551.Google Scholar
Schuerman, D.W. 1980, I.A.U. Symp. 90, 71.Google Scholar
Weinberg, J.L. 1964, Ann. Astrophys. 27, 718.Google Scholar