No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
The very great accuracy with which the motions of the Moon can now be monitored by laser ranging, differential VLBI and occultation observations, implies that the interpretation of the measurements is conditioned by the choice and the accurate knowledge of a selenocentric, a terrestrial and a celestial frames. Two different types of selenocentric reference frames can be envisioned. The present selenographic frames are discussed but the author proposes that one should introduce a system defined by a purely geometric means. Some consequences of such a choice are discussed. One feature of the future conventional terrestrial frame is very important for Earth-Moon dynamics. Its origin should coincide with the center of mass of the Earth as determined by lunar laser ranging. As far as the quasi-inertial reference systems are concerned, the liaisons between a purely lunar dynamical system, subject to some hardly modelable effects, and purely celestial systems are analysed. The reduction of observations made with various techniques implies the use of different systems, and several problems are stated that should be solved before a unique system for Earth-Moon dynamics might be used.