Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T00:54:18.830Z Has data issue: false hasContentIssue false

The Relation Between RS CVn and Algol

Published online by Cambridge University Press:  12 April 2016

Douglas S. Hall*
Affiliation:
Dyer Observatory, Vanderbilt University, Nashville, Tennessee 37235, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Late-type secondaries in Algol binaries are rapidly rotating convective stars and thus should be chromospherically active (CA). They are examined with respect to observational manifestations which characterize already known CA stars: Ca II H and K emission cores, photometric variability attributable to starspots, soft x-ray emission, non-thermal radio emission, ultraviolet and infrared excess, and alternating period changes. The conclusion is that they can be regarded as another class of CA stars. In most respects they are literally indistinguishable from other CA stars. Ca II H and K emission cores are observed in the lobe-filling component of six semi-detached binaries: U Cep, RT Lac, RV Lib, AR Mon, S Vel, HR 5110. Alternating period changes are shown to occur only in Algols containing a late-type (convective) star. It is proposed, therefore, that the Matese-Whitmire mechanism explains these changes. Specifically, the interval from one increase (or decrease) to the next can be equated with the star’s magnetic cycle. Cycle lengths for 31 stars, derived in this way, range between 7 years and 109 years, with a median of 50 years.

Type
Research Article
Copyright
Copyright © Kluwer 1989

References

Appenzeller, I., Dearborn, D.S.P. 1984, Ap.J. 278, 689.Google Scholar
Arnold, C.N., Hall, D.S., Montle, R.E., Stuhlinger, T.W. 1979, Acta Astr. 29, 243.Google Scholar
Baldwin, B.W. 1973, P.A.S.P. 85, 714.Google Scholar
Baliunas, S.L., Vaughan, A.H. 1985, Ann. Rev. Astr. Astrophys. 23, 379.Google Scholar
Bond, H.E. 1972, P.A.S.P. 84, 839.Google Scholar
Bopp, B.W. 1983, I.A.U. Colloq. No. 71, 363.Google Scholar
Bopp, B.W., Fekel, F.C. 1977, A.J. 82, 490.CrossRefGoogle Scholar
Burke, E.W. et al. [10 authors] 1980, A.J. 85, 744.Google Scholar
De Campli, W.M., Baliunas, S.L. 1979, Ap.J. 230, 815.CrossRefGoogle Scholar
Eaton, J.A., Hall, D.S. 1979, Ap.J. 227, 907.Google Scholar
Eaton, J.A. 1986, Acta Astr. 36, 79.Google Scholar
Eker, Z. 1985, Wisconsin Astrophysics No. 228.Google Scholar
Fekel, F.C., Moffett, T.J., Henry, G.W. 1986, Ap.J. Suppl. 60, 551.Google Scholar
Fekel, F.C., Moffett, T.J., Henry, G.W., Simon, T. 1986, Cool Stars, Stellar Systems, and the Sun, edited by Zeilik, M. & Gibson, D.M. (Berlin: Springer-Verlag), 71.Google Scholar
Feldman, P.A., Kwok, S. 1979, J.R.A.S. Canada 73, 271.Google Scholar
Gibson, D.M. 1980, I.A.U. Symp. No. 88, 31.Google Scholar
Giuricin, G., Mardirossian, F., Mezzetti, M. 1983, Ap.J. Suppl. 52, 35.CrossRefGoogle Scholar
Hall, D.S. 1969, B.A.A.S. 1, 345.Google Scholar
Hall, D.S. 1974, Acta Astr. 24, 215.Google Scholar
Hall, D.S. 1975a, Acta Astr. 25, 1.Google Scholar
Hall, D.S. 1975b, Acta Astr. 25, 95.Google Scholar
Hall, D.S. 1976, I.A.U. Colloq. No. 29, 287.Google Scholar
Hall, D.S. 1983, Advances in Photoelectric Photometry 1, 18.Google Scholar
Hall, D.S. 1987, Pub. Astr. Inst. Czech. 70, 77.Google Scholar
Hall, D.S., Kreiner, J.M. 1980, Acta Astr. 30, 387.Google Scholar
Hill, G., Aikman, G.C.L., Cowley, A.P., Bolton, C.T., Thomas, J.C. 1976, Ap.J. 208, 152.CrossRefGoogle Scholar
Klimek, Z., Kreiner, J.M. 1973, Acta Astr. 23, 331.Google Scholar
Klimek, Z., Kreiner, J.M. 1975, Acta Astr. 25, 29.Google Scholar
Knipe, G.F.G. 1974, M.N. 167, 369.Google Scholar
Koch, R.H., Plavec, M., Wood, F.B. 1970, Publ. Univ. Pennsylvania, Astr. Ser. 10.Google Scholar
Matese, J.J., Whitmire, D.P. 1983, Astr. Astrophys. 117, L7.Google Scholar
Morgan, J.G., Eggleton, P.P. 1979, M.N. 187, 661.Google Scholar
Morris, D.H., Mutel, R.L. 1988, A.J. 95, 204.Google Scholar
Mutel, R.L., Morris, D.H. 1987, A.J. 93, 1220.Google Scholar
Olson, E.C. 1981, Ap.J. 250, 704.Google Scholar
Olson, E.C. 1985a, Interacting Binaries, edited by Eggleton, P.P. and Pringle, J.F. (Dordrecht: Reidel), 127.Google Scholar
Olson, E.C. 1985b, I.A.P.P.P. Comm. No. 19, 6.Google Scholar
Olson, E.C. 1987, A.J. 94, 1043.Google Scholar
Olson, E.C., Crawford, R.C., Hall, D.S., Louth, H., Markworth, N.L., Piirola, V. 1981, P.A.S.P. 93, 464.Google Scholar
Pallavicini, R., Golub, L., Rosner, R., Vaiana, G.S., Ayres, T., Linsky, J.L. 1981, Ap.J. 248, 279.Google Scholar
Plavec, M., Ulrich, R.K., Polidan, R.S. 1973, P.A.S.P. 85, 769.Google Scholar
Poe, C.H., Eaton, J.A. 1985, Ap.J. 289, 644.Google Scholar
Popper, D.M. 1976, Ap.J. 208, 142.CrossRefGoogle Scholar
Popper, D.M., DuMont, P.S. 1977, A.J. 82, 216.Google Scholar
Popper, D.M., Ulrich, R.K. 1977, Ap.J. 212, L131.Google Scholar
Rhombs, C.G., Fix, J.D. 1976, Ap.J. 209, 821.Google Scholar
Rucinski, S.M. 1976, P.A.S.P. 88, 244.CrossRefGoogle Scholar
Sahade, J. 1952, Ap.J. 116, 35.CrossRefGoogle Scholar
Söderhjelm, S. 1980, Astr. Astrophys. 89, 100.Google Scholar
Strassmeier, K.G., Hall, D.S., Zeilik, M., Nelson, E., Eker, Z., Fekel, F.C. 1988, Astr. Astrophys. Suppl. 72, 291.Google Scholar
VanBuren, D., Young, A. 1985, Ap.J. 295, L39.Google Scholar
White, N.E., Marshall, F.E. 1983, Ap.J. 268, L117.Google Scholar
White, N.E. et al. [7 authors] 1986, Ap.J. 301, 262.Google Scholar
Wood, F.B., Oliver, J.P., Florkowski, D.R., Koch, R.H. 1980, Publ. Univ. Pennsylvania, Astr. Ser. 12.Google Scholar
Zeilik, M., Hall, D.S., Feldman, P.A., Walter, F. 1979, S. & T. 57, 132.Google Scholar