Published online by Cambridge University Press: 12 April 2016
We have studied the motion of massless particles (stars) bound to a stellar system (a galactic satellite) that moves on a circular orbit in an external field (a galaxy). A large percentage of the stellar orbits turned out to be chaotic, contrary to what happens in the usual restricted three–body problem of celestial mechanics where most of the orbits are regular. The discrepancy is probably due to three facts: 1) Our study is not limited to orbits on the main planes of symmetry, but considers three–dimensional motion; 2) The force exerted by the satellite goes to zero (rather than to infinity) at the center of the satellite; 3) The potential of the satellite is triaxial, rather than spherical.