Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T03:48:56.706Z Has data issue: false hasContentIssue false

Radio Observations of Supernova Remnants in the M82 Starburst

Published online by Cambridge University Press:  19 September 2016

Alan Pedlar
Affiliation:
Jodrell Bank Observatory, University of Manchester, Cheshire SK11 9DL, UK;[email protected]
Tom Muxlow
Affiliation:
Jodrell Bank Observatory, University of Manchester, Cheshire SK11 9DL, UK;[email protected]
Jon Riley
Affiliation:
Jodrell Bank Observatory, University of Manchester, Cheshire SK11 9DL, UK;[email protected]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report on recent MERLIN, VLA and VLBI observations of the compact radio sources in the nearby starburst M82, with angular resolutions ranging from arcseconds to milliarcseconds. The spectral properties of the compact sources have been investigated by 15 GHz VLA-Pie Town observations which show that 16 of the less luminous compact sources are, in fact, HII regions. However the steep non-thermal spectrum, parsec size and small variability of the remaining sources is consistent with their being supernova remnants. Several show clear shell structures at MERLIN resolution (~50 mas) and 5 have been resolved further using VLBI. Measurements of the most compact source (41.95+575) shows an expansion velocity of ~ 2000 km s-1, and one of the best defined SNR shells (43.31+592) shows an expansion velocity of ~ 104 km s-1. Recent VLBI and MERLIN measurements confirm this expansion velocity and show little evidence for deceleration. We comment on the discrepancy between this measured expansion velocity and the low expansion velocities predicted theoretically for remnants in M82.

Type
Part III Supernovae: Progenitors/Remnants
Copyright
Copyright © Springer-Verlag 2005

References

1. Allen, M.L., Kronberg, P.P.: Astrophys. J. 502, 218 (1998)Google Scholar
2. Carlstrom, J.E., Kronberg, P.P.: Astrophys. J. 366, 422 (1991)Google Scholar
3. Chevalier, R.A., Fransson, C.: Astrophys. J. 558, 27 (2001)Google Scholar
4. Cram, L. et al.: Astrophys. J. 507, 155 (1998)Google Scholar
5. Kronberg, P.P., Wilkinson, P.N.: Astrophys. J. 200, 430 (1975)Google Scholar
6. Kronberg, P.P., Biermann, P., Schwab, F.R.: Astrophys. J. 291, 693 (1985)Google Scholar
7. Kronberg, P.P. et al.: Astrophys. J. 535, 706 (2000)Google Scholar
8. McDonald, A.R. et al.: Mon. Not. R. Astron. Soc. 322, 100 (2001)Google Scholar
9. McDonald, A.R. et al.: Mon. Not. R. Astron. Soc. 334, 912 (2002)Google Scholar
10. Muxlow, T.W.B. et al.: Mon. Not. R. Astron. Soc. 266, 455 (1994)Google Scholar
11. Pedlar, A. et al.: Mon. Not. R. Astron. Soc. 307, 761 (1999)Google Scholar
12. Pedlar, A.: “Extragalactic supernovae and the Starformation rate.” In: Proc. IAU symposium 205, ed. by Schilizzi, R. (ASP 2001) p. 366Google Scholar
13. Unger, S.W. et al.: Mon. Not. R. Astron. Soc. 211, 783 (1984)Google Scholar
14. van Buren, D., Greenhouse, M.A.: Astrophys. J. 431, 640 (1994)Google Scholar
15. Weiss, A. et al.: Astron. Astrophys. 365, 571 (2001)CrossRefGoogle Scholar
16. Wills, K.A. et al.: Mon. Not. R. Astron. Soc. 291, 517 (1997)Google Scholar
17. Wills, K.A., Pedlar, A., Muxlow, T.W.B.: Mon. Not. R. Astron. Soc. 298, 347 (1998)Google Scholar