Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:14:36.433Z Has data issue: false hasContentIssue false

Physical Properties of Frozen Volatiles–Their Relevance to the Study of Comet Nuclei

Published online by Cambridge University Press:  12 April 2016

J. Klinger*
Affiliation:
Laboratoire de Glaciologie et de Géophysique de l’Environment, B. P. 96, F 38 402 St. Martin d’Hères CEDEX, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structural and thermodynamical properties of water ice and ice mixtures containing CO, CO2, CH4, and NH3 are thought to be important for the evolution of cometary nuclei. Based on recent laboratory studies performed by several groups, an overview is given of the properties of various ices condensed at low temperatures and of their evolution during heating up to a temperature of about 200 K, typical of the perihelion temperature of a comet such as P/Halley. It is shown that the porous surface of amorphous water ice plays an important role in the retention of other volatiles. The kinetics of formation and of decomposition of clathrate hydrates are discussed. The molecular hydrates formed by NH3 are briefly presented, and the possibility of their occurrence in comet nuclei is discussed. With special attention drawn to amorphous ices and clathrate hydrates, a qualitative discussion of the influence of the physical properties of various types of ices on the thermal behavior of comet nuclei and on gas production rates of comets is presented.

Type
Section II: Laboratory Studies and Simulations
Copyright
Copyright © Kluwer 1991

References

A’Hearn, M.F., and Feldman, P.D. (1985). ‘S2: A Clue to the Origin of Cometary Ice?’, in Ices in the Solar System Klinger, J., Benest, D., Dollfus, A., and R., Smoluchowski (eds.), D. Reidel Publishing Co., Dordrecht, pp. 463471.Google Scholar
Allen, M., Delitsky, M., Huntress, W., Yung, Y., Ip, W.-H., Schwenn, R., H., Rosenbauer, Shelley, E., Balsiger, H., and Geiss, J. (1987). ‘Evidence for Methane and Ammonia in the Coma of Comet P/Halley,’ Astron. Astrophys. 187, 502512.Google Scholar
Bar-Nun, A., Herman, G., and Laufer, D. (1985). ‘Trapping and Release of Gases by Water Ice and Implications for Icy Bodies,’ Icarus 63, 317332.CrossRefGoogle Scholar
Bar-Nun, A., Dror, J., Kochavi, E., and Laufer, D. (1987). ‘Amorphous Water Ice and Its Ability To Trap Gases,’ Phys. Rev. B 35, 24273435.Google Scholar
Bar-Nun, A., Kleinfield, I., and Kochavi, E. (1988). ‘Trapping of Gas Mixtures by Amorphous Water Ice,’ Phys. Rev. B 38, 77497754.Google Scholar
Bertie, J.E., and Morrison, M.M. (1980). ‘The Infrared Spectra of Hydrates of Ammonia, NH3·H2O and 2NH3·H2O at 95 K,’ J. Chem. Phys. 73, 48324837.CrossRefGoogle Scholar
Bertie, J.E., and Shehata, M.R. (1984). ‘Ammonia Dihydrate: Preparation, X-Ray Powder Diffraction Pattern, and Infrared Spectrum of NH3-2H20 at 100 K,’ J. Chem. Phys. 81, 2730.Google Scholar
Bockelée-Morvan, D., Crovisier, J., Despois, D., Forveille, T., Gérard, E., Schrami, J., and Thum, C. (1986). ‘A Search for Parent Molecules at Millimeter Wavelengths in Comets P/Giacobini-Zinner 1984e and P/Halley 1982i,’ in Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, Vol. I, pp. 365367.Google Scholar
Boutron, P., and Alben, R. (1975). ‘Structural Model for Amorphous Solid Water,’ J. Chem. Phys. 62, 48484853.Google Scholar
Chowdhury, M.R., Dore, J.C., and Montangue, D.G. (1983). ‘Neutron Diffraction Studies and CRN Model of Amorphous Ice,’ J. Phys. Chem. 87, 40374039.Google Scholar
Davidson, D.W., Garg, S.K., Gough, S.R., Handa, Y.P., Ratcliffe, C.I., Tse, J.S., and Ripmeester, J.A. (1984). ‘Some Structural and Thermodynamic Studies of Clathrate Hydrates,’ Journal of Inclusion Phenomena 2, 231238.Google Scholar
Davidson, D.W., Gough, S.R., Handa, Y.P., Ratcliffe, C.I., Ripmeester, J.A., and Tse, J.S. (1987a). ‘Some Structural Studies of Clathrate Hydrates,’ Journal de Physique , Supplément au no. 3, 48, 537542.Google Scholar
Davidson, D.W., Desando, M.A., Gough, S.R., Handa, Y.P., Ratcliffe, C.I., Ripmeester, J.A., and Tse, J.S. (1987b). ‘A Clathrate Hydrate of Carbon Monoxide,’Nature 328, 418419.CrossRefGoogle Scholar
Delsemme, A.H., and Miller, D.C. (1970). ‘Physico-Chemical Phenomena in Comets II — Gas Adsorption in the Snows of the Nucleus,’ Planet. Space Sci. 18, 717730.Google Scholar
Delsemme, A.H., and Swings, P. (1952). ‘Hydrates de Gaz Dans les Noyaux Cométaires et les Grains Interstellaires,’ Ann. Astrophys. 15, 116.Google Scholar
Delsemme, A.H., and Wenger, A. (1970). ‘Physico-Chemical Phenomena in Comets I — Experimental Study of Snows in a Cometary Environment,’ Planet. Space Sci. 18, 709715.Google Scholar
Donn, B. (1963). ‘The Origin and Structure of Icy Cometary Nuclei,’ Icarus 2, 396402.CrossRefGoogle Scholar
Dowell, L.G., and Rinfret, A.P. (1960). ‘Low Temperature Forms of Ice as Studied by X-Ray Diffraction,’ Nature 188, 11441148.Google Scholar
Drapatz, S., Larson, H.P., and Davis, D.S. (1987). ‘Search for Methane in Comet P/Halley,’ Astron. Astrophys. 187, 497501.Google Scholar
Eberhardt, P., Krankowsky, D., Schulte, W., Dolder, U., Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbemann, U., Hodges, R.R., Hoffman, J.H., and Illiano, J.M. (1987). ‘The CO and N2 Abundance in Comet P/Halley,’ Astron. Astrophys. 187, 481484.Google Scholar
Eisenberg, D., and Kauzmann, W. (1969). Structure and Properties of Water, Clarendon Press, Oxford.Google Scholar
Espinasse, S., Klinger, J., Ritz, C., and Schmidt, B. (1989). ‘A Method of Estimating Temperature Profiles and Chemical Differentiation in the Near Surface Layers of Porous Comet Nuclei — First Results for Comet P/Churyumov-Gerasimenko,’ in Proc. International Workshop on Physics and Mechanics of Cometary Materials, ESA SP-302, pp. 185190.Google Scholar
Falk, M. (1987). ‘Amorphous Carbon Dioxide,’ J. Chem. Phys. 86, 560564.Google Scholar
Festou, M.C., Feldman, P.D., A’Hearn, M.F., Arpigny, C., Cosmovici, C.B., Danks, A.C., McFaden, L.A., Weaver, H.A., and Woods, T.N. (1986). ‘IUE Observations of Comet Halley During the Vega and Giotto Encounters,’ Nature 321, 361363.Google Scholar
Ghormley, J.A. (1967). ‘Adsorption and Occlusion of Gases by the Low-Temperature Forms of Ice,’ J. Chem. Phys. 46, 13211325.Google Scholar
Ghormley, J.A. (1968). ‘Enthalpy Changes and Heat-Capacity Changes in the Transformations From High-Surface-Area Amorphous Ice to Stable Hexagonal Ice,’ J. Chem. Phys. 48, 503508.CrossRefGoogle Scholar
Greenberg, J.M. (1986). ‘Fluffy Comets,’ in Asteroids, Comets, Meteors II, Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Uppsala University, Uppsala, pp. 221223.Google Scholar
Hobbs, P.V. (1974). Ice Physics, Clarendon Press, Oxford.Google Scholar
Johnson, M.L., Schwake, A., and Nicol, M. (1985). ‘Partial Phase Diagram for the System NH3—H2O: The Water-Rich Region,’ in Ices in the Solar System, Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (eds.), D. Reidel Publishing Co., Dordrecht, pp. 3947.Google Scholar
Journal de Physique (1987). 48, Colloque, Supplément au no. 3.Google Scholar
Journal of Glaciology (1978). Special issue on the ‘Symposium on the Physics and Chemistry of Ice,’ Cambridge, England.Google Scholar
Journal of Physical Chemistry (1983). Special issue on the ‘VII International Symposium on the Physics and Chemistry of Ice.’Google Scholar
Kahane, A., Klinger, J., and Philippe, M. (1969). ‘Dopage Sélectif de la Glace Monocristalline Avec de l’Hélium et du Néon,’ Solid State Communications 7, 10551056.Google Scholar
Klinger, J. (1980). ‘Influence of a Phase Transition of Ice on the Heat and Mass Balance of Comets,’ Science 209, 271272.Google Scholar
Klinger, J. (1986). ‘Possible Alterations of Matter in Periodic Comets,’ in The Comet Nucleus Sample Return Mission, ESA SP-249, pp. 6974.Google Scholar
Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (eds.) (1985a). Ices in the Solar System, D. Reidel Publishing Co., Dordrecht.Google Scholar
Klinger, J., Ocampo, J., and Schmitt, B. (1985b). ‘On Clathrate Hydrates in Comets,’ in Asteroids, Comets, Meteors II, Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Uppsala University, Uppsala, pp. 241243.Google Scholar
Klinger, J., Benkhoff, J., Espinasse, S., Grün, E., Ip, W., Joo, F., Keller, H.U., Kochan, H., Kohl, H., Roessler, K., Seboldt, W., Spohn, T., and Thiel, K. (1989a). ’How Far Do Results of Recent Simulation Experiments Fit Current Models of Cometary Nuclei?’, Proc. 19th Lunar Planet. Sci. Conf., Lunar and Planetary Institute, Houston, pp. 493497.Google Scholar
Klinger, J., Eich, G., Bischoff, A., Joo, F., Kochan, H., Roessler, K., Stichler, W., and Stöffler, D. (1989b). ‘“KOSI” Comet Simulation Experiment at DFVLR: Sample Preparation and the Evolution of the 18O/16O and the D/H Ratio in the Icy Component,’ Adv. Space Res. 9, (3)123(3)125.Google Scholar
Kouchi, A. (1987). ‘Vapour Pressure of Amorphous H2O Ice and Its Astrophysical Implications,’ Nature 330, 550552.Google Scholar
Kouchi, A. (1989). ‘Evaporation of H2O—CO Ice and Its Astrophysical Implications,’ submitted to J. of Crystal Growth.Google Scholar
Laplace, P.S. (1796). Exposition du Systeme du Monde, third edition, Paris (1808).Google Scholar
Laufer, D., Kochavi, E., and Bar-Nun, A. (1987). ‘Structure and Dynamics of Amorphous Water Ice,’ Phys. Rev. B 36, 92199227.Google Scholar
Léger, A., Klein, J., de Cheveigne, S., Guinet, C., Défourneau, D., and Belin, M. (1979). ‘The 3.1 μm Absorption in Molecular Clouds Is Probably Due to Amorphous H2O Ice,’ Astron. Astrophys. 79, 256259.Google Scholar
Léger, A., Gauthier, S., Défourneau, D., and Rouan, D. (1983). ‘Properties of Amorphous H2O Ice and Origin of the 3.1 μm Absorption,’ Astron. Astrophys. 117, 164179.Google Scholar
Londono, D., Kuhs, W.F., and Finney, J.L. (1988). ‘Enclathration of Helium in Ice II: The First Helium Hydrate,’ Nature 332, 141142.Google Scholar
Mayer, E., and Hallbrucker, A. (1987). ‘Cubic Ice From Liquid Water,’ Nature 325, 601602.Google Scholar
Mayer, E., and Pletzer, R. (1984). ‘Polymorphism in Vapor Deposited Amorphous Solid Water,’ J. Chem. Phys. 80, 2939.Google Scholar
Mayer, E., and Pletzer, R. (1985). ‘Polymorphism in Vapor Deposited Amorphous Solid Water,’ in Ices in the Solar System, Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (eds.), D. Reidel Publishing Co., Dordrecht, pp. 8188.Google Scholar
Mayer, E., and Pletzer, R. (1987). ‘Amorphous Ice. A Microporous Solid: Astrophysical Implications,’ Journal de Physique Cl, Supplément au no. 3, 48, 581586.Google Scholar
McMillan, J.A., and Los, S.C. (1965). ‘Vitreous Ice: Irreversible Transformations During Warm-Up,’ Nature 206, 806807.Google Scholar
Miller, S.L. (1973). ‘The Clathrate Hydrates, Their Nature and Occurrence,’ in Physics and Chemistry of Ice Whalley, E., Jones, S.J., and Gold, L.W. (eds.), Royal Society of Canada, Ottawa, pp. 4250.Google Scholar
Miller, S.L. (1985). ‘Clathrate Hydrates in the Solar System,’, in Ices in the Solar System, Klinger, J., Benest, D., Dollfus, A., and Smoluchowski, R. (eds.), D. Reidel Publishing Co., Dordrecht, pp. 5979.Google Scholar
Moroz, V.I., Combes, M., Bibring, J.P., Coron, N., Crovisier, J., Encrenaz, T., Crifo, J.F., Sanko, N., Grigoryev, A.V., Bockelée-Morvan, D., Gispert, R., Nikolsky, Y.V., Emerich, C., Lamarre, J.M., Rocard, F., Krasnopolsky, V.A., and Owen, T.(1987). ‘Detection of Parent Molecules in Comet P/Halley From the IKS—Vega Experiment,’ Astron. Astrophys. 187, 513518.Google Scholar
Narten, A.H., Venkatesh, C.G., and Rice, S.A. (1976). ‘Diffraction Pattern and Structure of Amorphous Solid Water at 10 and 77 K,’ J. Chem. Phys. 64, 11061120.Google Scholar
Ocampo, J., and Klinger, J. (1982). ‘Adsorption of N2 and CO2 on Ice,’ Journal of Colloid and Interface Science 86, 377383.Google Scholar
Papoular, R., Léna, P., Marten, A., Rouan, D., and Wijnbergen, J. (1978). ‘Possible Identification of the 45-μm Ice Signature in Orion,’ Nature 276, 593594.Google Scholar
Patashnick, H., Rupprecht, G., and Schuerman, D.W. (1974). ‘Energy Source for Comet Outbursts,’ Nature 250, 313 CrossRefGoogle Scholar
Rickman, H. (1989). ‘The Nucleus of Comet Halley: Surface Structure, Mean Density Gas and Dust Production,’ Adv. Space Res. 9, (3)59(3)71.Google Scholar
Riehl, N., Bullemer, B., and Engelhardt, H. (eds.) (1969). Physics of Ice, Plenum Press, New York.Google Scholar
Ripmeester, J.A., Tse, J.S., Ratcliffe, C.I., and Powell, B.M. (1987). ‘A New Clathrate Hydrate Structure,’ Nature 325, 135136.Google Scholar
Sandford, S.A., and Allamandola, L.J. (1988). ‘The Condensation Behavior of H2O:CO Ices and Implications for Interstellar Grains and Cometary Activity,’ Icarus 76, 201224.Google Scholar
Schloerb, F.P., Kinzel, W.M., Swade, D.A., and Irvine, W.M. (1987). ‘Observations of HCN in Comet Halley,’ in Cometary Radio Astronomy, Irvine, W.M., Schloerb, F.P., and Tacconi-Garman, L.E. (eds.), National Radio Astronomy Observatory, Green Bank, West Virgina, pp. 6573.Google Scholar
Schmitt, B., and Klinger, J. (1987). ‘Different Trapping Mechanisms of Gases by Water Ice and Their Relevance for Comet Nuclei,’ in Symposium on the Diversity and Similarity of Comets, ESA SP-278, pp. 613619.Google Scholar
Schmitt, B., Ocampo, J., and Klinger, J. (1987). ‘Structure and Evolution of Different Ice Surfaces at Low Temperature Adsorption Studies,’ Journal de Physique, Supplément au no. 3, 48, 519525.Google Scholar
Schmitt, B., Grimm, R.J.A., and Greenberg, J.M. (1988). ‘Volatile Molecules in Interstellar Grain Mandes: Diffusion and Infrared Band Strength,’ in Dust in the Universe Bailey, M.E. and Williams, D.A. (eds.), Cambridge University Press, Cambridge, England, pp. 291296.Google Scholar
Schmitt, B., Grimm, R., and Greenberg, J.M. (1989a). ‘Spectroscopy and Physico-Chemistry of CO:H2O and CO:H2O Ices,’ in 22nd ESLAB Conference, Infrared Spectroscopy in Astronomy, ESA SP-290, pp. 213219.Google Scholar
Schmitt, B., Espinasse, S., Grimm, R.J.A., Greenberg, J.M., and Klinger, J. (1989b). ‘Laboratory Studies of Cometary Ice Analogues,’ in Proc. International Workshop on Physics and Mechanics of Cometary Materials, ESA SP-302, pp. 6569.Google Scholar
Smoluchowski, R. (1985). ‘Brightness Curve and Porosity of Comet Nuclei,’ in Asteroids, Comets, Meteors II, Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Uppsala University, Uppsala, pp. 305315.Google Scholar
Smoluchowski, R. (1988). ‘Clathrates in Cometary Nuclei and Porosity,’ Mon. Not. R. Astr. Soc. 235, 343348.Google Scholar
Spohn, T., Benkhoff, J., Klinger, J., Grün, E., and Kochan, H. (1989). ‘Thermal Modelling of Two KOSI Comet Nucleus Simulation Experiments,’ Adv. Space Res. 9, (3)127(3)131.Google Scholar
Sugisaki, M., Suga, H., and Seki, S. (1968). ‘Calorimetrie Study of the Glassy State. IV. Heat Capacities of Glassy Water and Cubic Ice,’ Bull. Chem. Soc. Japan 41, 2591.Google Scholar
Watson, K., Murray, B.C., and Brown, H. (1963). ‘The Stability of Volatiles in the Solar System,’ Icarus 1, 317327.Google Scholar
Whalley, E. (1981). ‘Scheiner’s Halo: Evidence for Ice in the Atmosphere,’ Science 211, 389390.Google Scholar
Whalley, E., Jones, S.J., and Gold, L.W. (eds.) (1973). Physics and Chemistry of Ice, Royal Society of Canada, Ottawa.Google Scholar
Whipple, F.L. (1950). ‘A Comet Model, I: Acceleration of Comet Encke,’ Astrophys. J. 111, 375394.Google Scholar
Whipple, F.L., and Huebner, W.F. (1976). ‘Physical Processes in Comets,’ Annual Rev. of Astron. and Astrophys. 14, 143169.Google Scholar
Wyckoff, S., Tegler, S., and Engel, L. (1988). ‘Ammonia Abundances in Comets,’ COSPAR paper S 5, 1. 7, 27th General Assembly of COSPAR, July 1988, Espoo, Finland.Google Scholar