No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Active galactic nuclei (AGNs) emit continuum radiation evenly spread over up to ten decades in frequency from the radio into the gamma-ray range. Plausible emission mechanisms and their characteristics are reviewed. In the deep potential wells around black holes the mean energy per proton can reach 100 MeV. Part or all of this energy may be channeled to all electrons equally (thermal plasma) or, preferentially, into only a small fraction of the electrons (nonthermal plasma). In the former case thermal Comptonization of soft photons may be the dominant emission mechanism, while in the latter case the synchrotron and the inverse Compton scattering process (synchro-self-Compton) are likely to dominate.
When the compactness parameter L (hν≈mc2 )/R. (power L, radius R) exceeds about 1030 ergs cm−1s−1 or L>Lc ≡ 1030R ergs s−1, then electron-positron pair production takes place due to photon-photon interactions causing the source to shroud itself with an electron-positron atmosphere. The efficiency of pair cascades in converting injected energy into electron-positron rest mass can reach levels of about 10% in static pair atmospheres. The emerging radiation is strongly modified by the pair atmosphere causing the spectrum to soften and to have characteristic breaks.
For emission coming from a region near the Schwarzschild radius, L>10-3LEdd is sufficient to cause prolific pair production. Radiation pressure then drives a mildly relativistic pair wind with Compton drag limiting the Lorentz factor to be less then 10. The pair rest mass power is at most of the order of Lc.
Most results so far on static pair atmospheres and pair winds are either qualitative or based on simple analytical models. Needed numerical treatments of both time dependent and steady radiative transfer of both the continuum and the annihilation line radiation in mildly relativistic flows are relevant not only for AGNs but also for gamma ray bursts and galactic black hole sources.