Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T12:32:54.008Z Has data issue: false hasContentIssue false

Periodic Orbits Around a Massive Straight Segment

Published online by Cambridge University Press:  12 April 2016

Andrés Riaguas
Affiliation:
TERMA at European Space Operations Centre. 64293 Darmstadt.Germany
Antonio Elipe
Affiliation:
Grupo de Mecánica Espacial. Universidad de Zaragoza. 50009 Zaragoza.Spain
Martín Lara
Affiliation:
Real Observatorio de la Armada. 11110 San Fernando.Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we consider the motion of a particle under the gravitational field of a massive straight segment. This model is used as an approximation to the gravitational field of irregular shaped bodies, such as asteroids, comet nuclei and planets’s moons. For tbis potential, we find several families of periodic orbits and bifurcations.

Type
Stellar Systems
Copyright
Copyright © Kluwer 1999

References

Broucke, R.: 1994, “Numerical Integration of Periodic Orbits in the Main Problem of Artificial Satellite Theory,” Celest Mech. & Dynam. Astr., 58, 99123.CrossRefGoogle Scholar
Broucke, R.: 1995, “Closed form expressions for some gravitational potentials: triangle, rectangle, pyramid and polyhedron.” AAS/AIAA Spaceflight Mechanics Meeting, AAS 95190, Albuquerque.Google Scholar
Byrnes, D.V., D’Amario, L.A.: 1995, “Dactyl orbit determination analysis,” AAS/AIAA Astrody- namics Specialist Conference, AAS 95-315, Halifax.Google Scholar
Coffey, S.L., Deprit, A., Miller, B.R.: 1986, “The Critical Inclination in Artificial Satellite Theory,” Celest. Mech. & Dynam. Astr., 39, 365406.CrossRefGoogle Scholar
Deprit, A. and Henrard, J.: 1967, “Natural families of periodic orbits,” Astronomical Journal 72, 158172.CrossRefGoogle Scholar
Hadjidemetriou, J.D.: 1993, “Asteroid Motion near the 3:1 Resonance,” Celest. Mech. & Dynam. Astr., 56, 563599.CrossRefGoogle Scholar
Halamek, P.: 1988, Motion m the potential of a thin bar. Ph. D. dissertation. Univ. of Texas. Austin.Google Scholar
Heiskanen, W.A., Moritz, H.: 1967, Physical Geodesy, Freeman and Co., W.H., San Francisco.Google Scholar
Kellogg, O.D.: 1954, Foundations of Potential Theory. Dover Publications, Inc. New York.Google Scholar
Lara, M., Deprit, A., Elipe, A.: 1995, “Numerical continuation of frozen orbits for the zonal problem.” Celest. Mech. & Dynam. Astr., 62, 167181.CrossRefGoogle Scholar
Lara, M.: 1996, “On numerical continuation of families of periodic orbits in a parametric potential.” Mechanics Research Communications, 23, 291298.CrossRefGoogle Scholar
Lara, M.: 1997, ‘On periodic polar orbits on the Artificial Satellite Problem.Journal of the Astro-nautical Sciences, 45, 321328. CrossRefGoogle Scholar
“NEAR.- Special Issue on the NEAR Mission to 433 Eros”: 1995, Journal Astronautical Sciences 43.Google Scholar
Prieto-Llanos, T., Gómez-Tierno, M.A.: 1994, “Station keeping at libration points of natural elongated bodies,” Journal of Guidance Control and Dynamics, 14, 787794.CrossRefGoogle Scholar
Scheeres, D.J.: 1995, “Satellite dynamics about Eros,” AAS/AIAA Spaceflight Mechanics Meeüng, AAS 95110, Albuquerque.Google Scholar
Scheeres, D.J., Ostro, S.J., Hudson, R.S., Werner, R.A.: 1996, “Orbits close to Asteroid 4769 Castalia,” Icarus, 121, 6787.CrossRefGoogle Scholar
Schwehm, G., Hechler, M.: 1994, “Rosetta - ESA’s Planetary cornerstone mission,” ESA Bulletin, 77, 718.Google Scholar
Werner, R.A.: 1994, “The gravitational potential of a homogeneous polyhedron or don’t cut corners,” Celest. Mech. & Dynam. Astr., 59, 253278.CrossRefGoogle Scholar
Werner, R.A., Scheeres, D.J.: 1996, “Exterior gravitation of a polyhedron derived and compared with harmonic and mascón gravitation representation of asteroid 4769 Castalia,” Celest. Mech. & Dynam. Astr., 65, 313344.Google Scholar