Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T00:21:04.918Z Has data issue: false hasContentIssue false

The Origin of Multiple Stars by Condensation in Dense Nebulae

Published online by Cambridge University Press:  12 April 2016

Arcadio Poveda*
Affiliation:
Instituto de Astronomía Universidad Nacional Autónoma de México

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The classical theories of double star formation are briefly reviewed in relation to the origin of multiple stars. Modern observations in the infrared are discussed and their relevance as clues to the process of multiple star formation is stressed. These observations, together with dynamical considerations and data on the statistics of trapezia and hierarchical multiple systems, support the view that multiple stars, in general, are born as trapezia, that is, as independent condensations.

Resumen

Resumen

Se hace una breve reseña de las teorías clásicas para explicar el origen de las estrellas dobles, y de su relación con el origen de los sistemas múltiples. Se discuten las observaciones que recientemente se han hecho en el infrarrojo, enfatizado su importancia para el entendimiento del proceso de formación de las estrellas múltiples. Estas observaciones, junto con consideraciones dinámicas y datos estadísticos sobre trapecios y sistemas múltiples jerárquicos, apoyan la idea de que las estrellas múltiples, en general, se originan como trapecios, es decir, como condensaciones independientes.

Type
Session 6
Copyright
Copyright © Otto G. Franz and Paris Pismis 1977

References

Abt, H., and Levy, S. 1975, preprint.Google Scholar
Allen, C. 1968, thesis, National University of Mexico, 15.Google Scholar
Allen, C., and Poveda, A. 1974, Proc. IAU Symposium62, The Stability of the Solar System and of Small Stellar Systems, ed. Kozai, Y. (Dordrecht: D. Reidel), 239.Google Scholar
Allen, C., Parrao, L., Tapia, M., and Poveda, A. 1977, in preparation.Google Scholar
Ambartsumian, V. A. 1937, A. J. URSS, 14, 3.Google Scholar
Becklin, E. E., Nucgebauer, G., and Wynn-Williams, C. G. 1974, reported by Wynn-Williams, and Becklin, 1974.Google Scholar
Bok, B.J., Cordwcll, C.C., and Cromwell, R. H. 1970, in Dark Nebulae, Globules and Protostars, ed. Lynds, B. T. (Tucson: University of Arizona Press), 33.Google Scholar
Finsen, W.S., and Worley, C.E. 1970, Republ. Obs. Johannesb. Circ, 7, N° 129.Google Scholar
Gillett, F.C., and Forrest, W.J. 1973, Ap. J., 179, 483.CrossRefGoogle Scholar
Heintz, W. D. 1969, J.R.A.S. Canada, 163, 275.Google Scholar
Low, F.J., 1970, in Dark Nebulae, Globules and Protostars, ed. Lynds, B.T. (Tucson: University of Arizona Press), 115.Google Scholar
Ostrikcr, J. 1975, paper presented at IAU Symposium73.Google Scholar
Pottasch, S.R. 1962, in Interstellar Matter in Galaxies, ed. Woltjer, L. (New York: Benjamin), 205.Google Scholar
Poveda, A. 1965, Bol. Obs. Tonantzintla y Tacubaya, 4, 15.Google Scholar
Poveda, A., Ruiz, J., and Allen, C. 1967, Bol. Obs. Tonantzintla y Tacubaya, 4, 86.Google Scholar
Russell, H.N. 1910, Ap. J., 31, 185.CrossRefGoogle Scholar
Thackeray, A.D. 1950, M.N.R.A.S., 110 524.CrossRefGoogle Scholar
Wallenquist, A. 1944, Uppsala Ann., 1, N° 5.Google Scholar
Wynn-Williams, C.G., Becklin, E.E. 1974, Pub. A.S.P., 86, 5.CrossRefGoogle Scholar