Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T08:01:25.362Z Has data issue: false hasContentIssue false

The Optical Properties of Interplanetary Dust

Published online by Cambridge University Press:  12 April 2016

P.L. Lamy
Affiliation:
Laboratoire d’Astronomie Spatiale Les Trois Lues, 13012 Marseille, France
J.M. Perrin
Affiliation:
Laboratoire d’Astronomie Spatiale Les Trois Lues, 13012 Marseille, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

After briefly evaluating the observations of the Zodiacal Light and F-corona, we review the laboratory results on the light scattering by dust particles and the various theories which have been recently proposed. We then discuss the optical properties of the dust with emphasis on the phase function, the polarization, the color, the albedo and the local enhancement in the Gegenschein.

Type
Interplanetary Dust: Zodiacal Light and Optical Studies
Copyright
Copyright © Kluwer 1991

References

Bliek, P. and Lamy, P. (1988) ’Laboratory measurements of light scattering by dust particles’, Bussoletti, E. et al. (eds.), Experiments on Cosmic Dust Analogues, Kluwer Academic Publishers, pp. 253258.CrossRefGoogle Scholar
Buitrago, J., Gomez, R. and Sanchez, F. (1983) ’The integral equation approach to the study of interplanetary dust’, Planet. Space Sci. 31, 373376.CrossRefGoogle Scholar
Cebula, R.P. and Feldman, P.D. (1982) ’Ultraviolet spectroscopy of the zodiacal light’, Ap.J. 263, 987992.CrossRefGoogle Scholar
Chiappetta, P. (1980) ’A new model for scattering by irregular absorbing particles’, Astron. Astrophys. 83, 348.Google Scholar
Dumont, R. (1973) ’Phase function and polarization curve of interplanetary scatterers from zodiacal light photopolarimetry’, Planet. Space Sci 21, 21492155.CrossRefGoogle Scholar
Dumont, R. and Sanchez, F. (1975) ’Zodiacal light photopol arimetry. II Gradients along the ecliptic and the phase functions of interplanetary matter’, Astron. Astrophys. 38, 405412.Google Scholar
Dumont, R. and Sanchez, F. (1976) ’Zodiacal light photopolarimetry. III. All-sky survey from Teide 1964-1975 with emphasis on off-ecliptic features’, Astron. Astrophys. 51, 393399.Google Scholar
Dumont, R., and Levasseur-Regourd, A.C. (1988) ’Properties of interplanetary dust from infrared and optical observations’, Astron. Astrophys. 191, 154160.Google Scholar
Fechtig, H., Leinert, Ch. and Grün, E. (1981) ’Interplanetary dust and zodiacal light’, in Landolt-Börnstein, New Series, Volume 2a, Schaifers, K. and Voight, H.H. (eds.), Chapter 3.3.4., Springer Berlin-Heidelberg-New-York, pp. 228243.Google Scholar
Giese, R.H., Killinger, R.T., Kneissel, B. and Zerull, R.H. (1986) ’Albedo and colour of dust grains: laboratory versus cometary results’, ESA SP-250, pp. 5357.Google Scholar
Gustafson, B.A.S., Zerull, R.H., Corbach, E. and Schulz, K. (1989) ’Light scattering by open-structured and filamentary dust aggregates; experiment and theory’, Jenniskens, P.M.M. and Hage, J.I. (eds.), Fluffy structures II, University of Leiden, pp. 36.Google Scholar
Killinger, R.T. (1987) Dissertation, Ruhr-Universität, Bochum.Google Scholar
Koutchmy, S. and Lamy, P.L. (1985) ’The F-corona and the circum-solar dust evidences and properties’, Giese, R.H. and Lamy, P. (eds.), Properties and interactions of interplanetary dust. D. Reidel publishing company, Dordrecht-Boston-Lancaster-Tokyo, pp. 6374.CrossRefGoogle Scholar
Lamy, P.L. and Perrin, J.M. (1986) ‘Volume scattering function and space distribution of the interplanetary dust cloud’, Astron. Astrophys. 163, 269286.Google Scholar
Lamy, P.L., Grün, E. and Perrin, J.M. (1987) ’Comet P/Halley: implications of the mass distribution function for the photopolarimetric properties of the dust coma’, Astron. Astrophys. 187, 767773.Google Scholar
Leinert, C. and Grün, E. (1991) ’Interplanetary Dust’, Schwerin, R. and Marsch, E., Springer (eds.), Physics of the Inner Heliosphere.Google Scholar
Leinert, C., Link, H., Pitz, E. and Giese, R.H. (1976) ’Interpretation of a rocket photometry of the inner zodiacal light’, Astron. Astrophys. 47, 221230.Google Scholar
Leinert, C., Richer, I., Pitz, E. and Hanner, M. (1982) ’Helios zodiacal light measurements - a tabulated summary’, Astron. Astrophys. 110, 355357.Google Scholar
Levasseur-Regourd, A.C. and Dumont, R. (1980) ’Absolute photometry of zodiacal light’, Astron. Astrophys. 84, 277279.Google Scholar
Perrin, J.M. and Lamy, P.L. (1990) ’On the validity of effective medium theories to light extinction by inhomogeneous dust particles’, Astrophys. J. 364, 146151.CrossRefGoogle Scholar
Perrin, J.M. and Lamy, P.L. (1989) ’The color of the zodiacal light and the size distribution and composition of interplanetary dust’, Astron. Astrophys. 226, 288296.Google Scholar
Purcell, E.M. and Pennypacker, C.R. (1973) ’Scattering and absorption of light by nonspherical dielectric grains’, Astrophys. J. 186, 705714.CrossRefGoogle Scholar
Maucherat, A., Llebaria, A. and Gonin, J.C. (1986) ’A general survey of the gegenschein in blue light, Astron. Astrophys. 167, 173.Google Scholar
Schuerman, D.W. (1979) ’Inverting the zodiacal light brightness integral’, Planet. Space Sci. 27, 551556.CrossRefGoogle Scholar
Schuerman, D.W. (1980) ’The microwave analog facility at Sunya: capabilities and current programs’, Schuerman, D.W. (ed.), Light Scattering by Irregular Shaped Particles, New-York, pp. 227232.CrossRefGoogle Scholar
Toller, G.N. and Weinberg, J.L. (1985) ’The change in near-ecliptic zodiacal light brightness with heliocentric distanceGiese, R.H. and Lamy, P. (eds.), Properties and interactions of interplanetary dust. D. Reidel publishing company, Dordrecht-Boston-Lancaster-Tokyo, pp. 6374.Google Scholar
Weiss-Wrana, K. (1983) ’Optical properties of interplanetary dust: comparison with light scattering by larger meteoritic and terrestrial grains’, Astron. Astrophys. 126, 240250.Google Scholar
Zerull, R.H., Giese, R.H. and Weiss, K. (1977) ’Scattering functions of nonspherical dielectric and absorbing particles vs Mie theory’, Appl. Optics 16, 777778.CrossRefGoogle ScholarPubMed