Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-12T21:27:03.924Z Has data issue: false hasContentIssue false

Optical and Thermal Properties of Zodiacal Dust

Published online by Cambridge University Press:  27 February 2018

A.C. Levasseur-Regourd*
Affiliation:
Université Paris 6/ Aéronomie CNRS, BP 3, 91371 Verrières, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent progress has been reported in the determination of the zodiacal thermal emission, brightness and polarization. These results, of interest to estimate the foreground sources in astrophysical observations, do not provide immediately information on the dust distribution, and on its optical and thermal properties. To infer local information about the bulk density, and the physical properties of the dust particles, it is necessary to compare the observations with realistic models or to invert the line-of-sight data. The latter approach typically suggests that the bulk density is (in the symmetry plane) inversely proportional to the solar distance, that the particles are not spheroidal, but rather irregular in shape, that their physical properties change with their distance to the Sun and their orbital inclination, and finally that they do not emit like a blackbody. The heterogeneity noticed in the cloud is due to various sources of dust particles, the size, shape or albedo of which evolve as a function of time, under collision and/or evaporation processes.

Type
IX. Zodiacal Light and Thermal Emission
Copyright
Copyright © Astronomical Society of the Pacific 1996

References

Baguhl, and Grim, , 1996, This volume.Google Scholar
Bogges, N.W., Mather, J.C., Weiss, R. et al., 1992, Astrophys. J. 397, 420.Google Scholar
Dermott, S.F., Durda, D.D., Gustafson, B.Å.S., et al., 1994, In Asteroids, Comets, Meteor 93, eds. Milani, A., Di Martino, M., Cellino, A., Kluwer, 127Google Scholar
Dermott, S.F., Nicholson, P.D., Burns, J.A., Houck, J.R., 1984, Nature 312, 509.Google Scholar
Divine, N. J., 1993, Geophys. Res. 98, 17029.Google Scholar
Dumont, R., 1973, Planet. Space Sci. 21, 2149.Google Scholar
Dumont, R., Sanchez, R, 1975, Astron. Astrophys. 38, 405.Google Scholar
Dumont, R., Levasseur-Regourd, A.C., 1978, Astron. Astrophys. 64, 9.Google Scholar
Dumont, R., Levasseur-Regourd, , 1985, Planet. Space Sci. 33, 1.CrossRefGoogle Scholar
Dumont, R., Levasseur-Regourd, A.C., 1987, In Interplanetary matter, eds. Ceplecha, Z., Pecina, P., Czechoslovak Acad. Sci. 281.Google Scholar
Dumont, R., Levasseur-Regourd, A.C., 1988, Astron. Astrophys. 191, 154.Google Scholar
Fechtig, H., Leinert, C., Grün, E., 1981, In Interplanetary dust and zodiacal light, eds. Schaifers, K., Voigt, H., Landolt-Bornstein, Springer-Verlag, 228.Google Scholar
Goidet-Devel, B., Renard, J.B., Levasseur-Regourd, A.C., 1995, Planet. Space Sci. 43, 779.Google Scholar
Hanner, M.S., 1980, Icarus 43, 373.Google Scholar
Hanner, M.S., Lynch, D.K., Russel, R.W., 1994, Astrophys. J. 425, 274.Google Scholar
Hauser, M.G., Gillett, F.C., Low, F.L., et al., 1984, Astrophys. J. 278, L15. Google Scholar
Lamy, P.L., Perrin, J.M., 1986, Astron. Astrophys. 163, 269.Google Scholar
Lamy, P.L., Perrin, J.M., 1991, In Origin and evolution of interplanetary dust, eds. Levasseur-Regourd, A.C., H. Hasegawa, Kluwer, 163.Google Scholar
Leinert, C., Pitz, E., Hanner, M., Link, H., 1977, J. Geophys. 42, 669.Google Scholar
Leinert, C., Hanner, M., Richter, I., Pitz, E., 1980, Astron. Astrophys. 82, 328.Google Scholar
Levasseur-Regourd, A.C, Dumont, R., 1980, Astron. Astrophys. 84, 277.Google Scholar
Levasseur-Regourd, A.C, Dumont, R., Renard, J.B., 1990, Icarus 86, 264.CrossRefGoogle Scholar
Levasseur-Regourd, A.C., Renard, J.B., Dumont, R., 1991, In Origin and evolution of interplanetary dust, eds. Levasseur-Regourd, A.C., H. Hasegawa, Kluwer, 131.Google Scholar
Levasseur-Regourd, AC., Hadamcik, E., Renard, J.B., 1995, Astron. Astrophys. in press.Google Scholar
Mann, I., 1992, Astron. Astrophys. 261, 329.Google Scholar
Mann, I., Mukai, T., Okamoto, H., 1995, Adv Space Res. 16, (2)37. Google Scholar
Muinonen, K., Lumme, 1991, In Origin and evolution of interplanetary dust, eds. A.C Levasseur-Regourd, H. Hasegawa, Kluwer, 159.Google Scholar
Murdock, T.L., Price, S.D., 1985, Astron. J. 90, 375.Google Scholar
Price, S.D., Murdock, T.L., Marotte, L.P., 1982, Astron. J 87, 131.CrossRefGoogle Scholar
Reach, W.T., 1991, Astrophys. J. 369, 529.CrossRefGoogle Scholar
Reach, W.T., Franz, B.A., Weiland, J.L., et al., 1995, Nature, 374, 521.Google Scholar
Renard, J.B., Levasseur-Regourd, A.C, Dumont, R., 1991, In Origin and evolution of interplanetary dust, eds. A.C Levasseur-Regourd, H. Hasegawa, Kluwer, 199.CrossRefGoogle Scholar
Renard, J.B., Levasseur-Regourd, A.C, Dumont, R., 1995, Astron. Astrophys. 304, 602.Google Scholar
Renard, J.B., Dumont, R., Levasseur-Regourd, A.C, Hadamcik, E., 1996, This volume.Google Scholar
Sykes, M.V., 1990, Icarus 85, 267.Google Scholar
Sykes, M.V., Lebofsky, L.A., Hunten, D.M., Low, F.J., 1986, Science 232, 1115.Google Scholar
Vrtilek, J.M., Hauser, M.G., 1995, Astrophys. J. 455, 677.Google Scholar