Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-12T10:35:50.368Z Has data issue: false hasContentIssue false

On the Problem of post-Newtonian Rotational Motion

Published online by Cambridge University Press:  12 April 2016

Sergei A. Klioner*
Affiliation:
Lohrmann Observatorium, Institut für Planetare Geodäsie Dresden, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problems of modeling of the rotational motion of the Earth are considered in the framework of general relativity. Both, rigid and deformable bodies are discussed. Rigorous definitions of the tensor of inertia, Tisserand-like axes and the angular velocity of rotation of an extended deformable body moving and rotating in external gravitational fields are proposed in the first post-Newtonian approximation. The implications of these post-Newtonian definitions on modeling of Earth rotation are analyzed.

Type
Theory of Motion
Copyright
Copyright © Kluwer 1997

References

Bizouard, C., Schastok, J., Soffel, M.H., and Souchay, J.: 1992, “Étude de la rotation de la Terre dans le cadre de la relativité générale: première approche”, in: Journées 1992 (Capitaine, N., ed.), Obs. de Paris, 7684.Google Scholar
Brumberg, V.A.: 1972, Relativistic Celestial Mechanics, Nauka, Moscow (in Russian).Google Scholar
Brumberg, V.A. and Kopejkin, S.M.: 1989, “Relativistic theory of celestial reference frames”, in: Reference Frames (Kovalevsky, J., Mueller, I.I., Kolaczek, B., eds), Kluwer, Dordrecht, p.115. CrossRefGoogle Scholar
Brumberg, V.A.: 1995, “General relativistic description of Earth’s rotation in different reference systemsJ. Geodyn. 20, 181197.CrossRefGoogle Scholar
Damour, T., Soffel, M., and Xu, C.: 1993, “General relativistic celestial mechanics III. Rotation equations of motion”, Phys. Rev. D 47, 31243135.CrossRefGoogle ScholarPubMed
Dixon, W.G.: 1979, “Extended bodies in general relativity: their description and motion”, in: Isolated Gravitating Systems in Generai Relativity (Ehlers, J. ed.), North-Holland, Amsterdam, 156219.Google Scholar
Fock, V.A.: 1959, Theory of Space, Time and Gravitation, Pergamon, Oxford.Google Scholar
Hartmann, T. and Soffel, M.: 1996, “The nutation of a rigid Earth model: A complete new series from a high precision tidal potential development”, Celest. Mech. & Dyn. Astron., in press.CrossRefGoogle Scholar
Klioner, S.A.: 1996, “Angular velocity of rotation of extended bodies in general relativity;, in: Dynamics, Ephemerides and Astrometry of the Solar System, IAU Symposium 172 (S. Ferraz-Mello, B. Morando, J.E. Arlot, eds), Kluwer, Dordrecht, 309320.Google Scholar
Klioner, S.A.: 1995, “Relativistic effects in orientation of astronomical reference frames”, in: Earth Rotation, Reference Systems in Geodynamics and Solar System, Journées 1995 (Capitaine, N., Kolaczek, B., Debarbat, S. eds), Warsaw, 175178.Google Scholar
Moritz, H. and Mueller, I.I.: 1987, Earth Rotation: Theory and Observation, Ungar, New York.Google Scholar
Soffel, M.: 1994, “The problem of rotational motion and rigid bodies in the post-Newtonian framework”, unpublished notes.Google Scholar
Thorne, K.S. and Gürsel, Y.: 1983, “The free precession of slowly rotating neutron stars: rigid-body motion in general relativity”, Mon. Not. R. Astron. Soc. 205, 809817.CrossRefGoogle Scholar
Voinov, A.V.: 1988, “Motion and rotation of celestial bodies in the post-Newtonian approximation”, Celest. Mech. 41, 293307.Google Scholar