No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
About 60% of stars of the disc population in our Galaxy are close binary systems (CBS). Half of the known CBS are spectroscopic binary stars (Kraitcheva et al., 1978).
To know the distribution of a correlation between the masses of CBS components and semiaxes of their orbits is necessary for the investigation of the origin and evolution of CBS. For such statistical investigations, a catalogue of CBS was compiled at the Astronomical Council. The catalogue is based on the 6th Batten catalogue (Batten, 1967), its extensions (Pedoussant and Ginestet, 1971; Pedoussant and Carquillat, 1973) and data published up to the end of 1980 (Popova et al., 1981). Now it is recorded on magnetic tape and contains data on 1041 spectroscopic binaries; 333 of them are stars with two visible spectra. The latter are mostly systems prior to mass exchange and the distribution of physical parameters in these systems reflects the distribution and presumably conditions at the time of formation. Using some assumptions, we can obtain for spectroscopic binaries masses of the components M1 and M2 (or the ratio q = M1/M2) and semiaxes of their orbits. Masses of components with the known sin i were obtained by the usual technique; when sin i was not known, masses were estimated from the spectra. We shall discuss here the distribution of CBS in the M-a plane.