Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T20:37:38.810Z Has data issue: false hasContentIssue false

On the Central Engine of Short Gamma-ray Bursts

Published online by Cambridge University Press:  19 September 2016

Stephan Rosswog
Affiliation:
Dept. Physics & Astronomy, University of Leicester, Leicester LEI 7RH, UK; [email protected]
Enrico Ramírez-Ruiz
Affiliation:
Institute of Astronomy, Cambridge, CB3 OHA, UK; [email protected]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We assess the ability of neutron star binary coalescence to produce short gamma-ray bursts (GRBs). We find that the neutrino annihilation above the merged remnant will drive bipolar, relativistic jets along the initial binary rotation axis. This outflow can be collimated by the energetic, neutrino-driven baryonic wind that is blown off the remnant. Despite the narrow neutron star mass distribution the apparent luminosities will be spread over a broad range from ~ 1049 to ~ 1052erg s−1, typical jet opening half-angles are around 5 degrees. If the central core of the merger remnant does not collapse immediately convective dynamo action will set in and the available kinetic energy can be transformed into magnetic fields in excess of 1017 G. The corresponding spin-down time scale is ~ 0.2 s, just about the duration of a short GRB.

Type
Part VII Gamma-Ray Bursters
Copyright
Copyright © Springer-Verlag 2005

References

1. Asano, K., Fukuyama, T.: Astrophys. J. 531, 949 (2000)Google Scholar
2. Asano, K., Fukuyama, T.: Astrophys. J. 546, 1019 (2001)Google Scholar
3. Epstein, R.I.: Mon. Not. R. Astron. Soc. 188, 305 (1979)Google Scholar
4. Fryer, C.L., Kalogera, V.: Astrophys. J. 554, 548 (2001)CrossRefGoogle Scholar
5. Jaroszinski, M.: Acta Astronomica 43, 183 (1993)Google Scholar
6. Katz, J.I.: Astrophys. J. 490, 772 (1997)Google Scholar
7. Lazzati, D., Ramirez-Ruiz, E., Ghisellini, G.: Astron. Astrophys. 379, L39 (2000)Google Scholar
8. Levinson, A., Eichler, D.: Phys. Rev. Lett. 85, 236 (2000)Google Scholar
9. Mészáros, P., Rocs, M.J.: Astrophys. J. Lett. 482, L29 (1997)Google Scholar
10. Mészáros, P.: Arm. Rev. Astron. Astrophys. 40, 137 (2002)Google Scholar
11. Mochkovitch, R., Hernanz, M., Isern, J., Martin, X.: Nature 361, 236 (1993)Google Scholar
12. Narayan, R., Paczyński, B., Piran, T.: Astrophys. J. Lett. 395, L83 (1992)Google Scholar
13. Panaitescu, A., Kumar, P., Narayan, R.: Astrophys. J. Lett. 561, L171 (2001)Google Scholar
14. Piran, T.: Phys. Rep. 314, 575 (1999)CrossRefGoogle Scholar
15. Popham, R., Woosley, S.E., Fryer, C.: Astrophys. J. 518, 356 (1999)Google Scholar
16. Rosswog, S., Davies, M.B.: Mon. Not. R. Astron. Soc. 334, 481 (2002)Google Scholar
17. Rosswog, S., Ramirez-Ruiz, E.: Mon. Not. R. Astron. Soc. 336, L7 (2002)Google Scholar
18. Rosswog, S., Liebendörfer, M.: Mon. Not. R. Astron. Soc. 342, 673 (2003)Google Scholar
19. Rosswog, S., Ramirez-Ruiz, E.: Mon. Not. R. Astron. Soc. 343, L36 (2003)Google Scholar
20. Rosswog, S., Ramirez-Ruiz, E., Davies, M.B.: Mon. Not. R. Astron. Soc. 345, 1077 (2003)Google Scholar
21. Ruffert, M., Janka, H.-T., Takahashi, K., Schäfer, G.: Astron. Astrophys. 319, 122 (1997)Google Scholar