Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T05:00:47.843Z Has data issue: false hasContentIssue false

Non-spherical Outflows in Massive Binary Systems: Circumbinary Disks?

Published online by Cambridge University Press:  12 April 2016

Gloria Koenigsberger
Affiliation:
Instituto de Astronomía, UNAM
Edmundo Moreno
Affiliation:
Instituto de Astronomía, UNAM
Jorge Cantó
Affiliation:
Instituto de Astronomía, UNAM

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The trajectories of wind particles emitted from the surface of a massive star in a close binary system are analyzed. Within a radius 1000 times the separation of the two stars, a significant fraction of the particle trajectories are found to cross the orbital plane, leading to the formation of a large-scale, outflowing circumbinary disk-like structure. The shocks which arise due to the collision of particles which are within crossing streamlines are expected to produce selected regions within the wind, particularly in the orbital plane, in which a higher degree of ionization prevails than in the wind in general. X-ray emission might also be expected from these regions. Such a model is suggested to be applicable to the erupting WR/LBV binary system HD 5980 and other binary LBV systems, during phases when wind velocities are slow.

Type
Section III Variable Winds
Copyright
Copyright © Springer-Verlag 1999

References

Barbá, R., Niemela, V., Morel, N. (1997): in Luminous Blue Variables: Massive Stars in Transition, ASP Conf. Ser. 120, 238.Google Scholar
Bodenheimer, P., Tamm, R.E. (1984): ApJ, 280, 771 CrossRefGoogle Scholar
Breysacher, J. (1997): in Luminous Blue Variables: Massive Stars in Transition, ASP Conf. Ser. 120, 227.Google Scholar
Cassinelli, J., Ignace, R., Bjorkman, J. (1995) in IAU Symposium 163, WR Stars: Binaries, Colliding Winds, Evolution, eds. van der Hucht, K.A. and Williams, P.M.(Dordrecht:Kluwer), p.191.Google Scholar
Dammeli, A., Conti, P., Lopes, D.F., 1997, NewA 2, 107.Google Scholar
Drissen, L., Leitherer, C., Nota, A. (1992): Nonisotropic and Variable Outflows from Stars, ASP Conf. Ser. 22.Google Scholar
Fliegner, J., Langer, N. (1995), in IAU Symposium 163, WR Stars: Binaries, Colliding Winds, Evolution, eds. van der Hucht, K.A. and Williams, P.M., (Dordrecht:Kluwer), p.326.Google Scholar
Frank, A. (1997): in Luminous blue Variables: massive stars in Transition, ASP Conf. Ser. 120, 338.Google Scholar
Garcia-Segura, G., Langer, N., MacLow, M.M. (1997): in Luminous blue Variables: massive stars in Transition, ASP Conf. Ser. 120, 332.Google Scholar
Iben, I., Livio, M. (1993): ASP, 105, 1373.Google Scholar
Koenigsberger, G., Guinan, E., Auer, L.H., Georgiev, G., (1995): ApJ, 452, L.107.CrossRefGoogle Scholar
Koenigsberger, G., Auer, L.H., Georgiev, L., Guinan, E. (1998a):ApJ, 496, 934.Google Scholar
Koenigsberger, G., Peña, M., Schmutz, W., Ayala, S. (1998b): ApJ, 499, 889.Google Scholar
Lamers, H.J.G.L.M., Livio, M., Panagia, N., Walborn, N., (1998), ApJ in Press.Google Scholar
Livio, M., Soker, N. (1988): ApJ, 329, 764.Google Scholar
Moffat, A.F.J., Marchenko, S., Bartzakos, P., Niemela, V., Cerruti, M.A., Magalhaes, A.M., Balona, L., St.-Louis, N., Seggewiss, W., Lamontagne, R. (1998) ApJ in press.Google Scholar
Moreno, E., Georgiev, L., Koenigsberger, G. (1997): in Luminous Blue Variables:Massive Stars in Transition, ASP Conf. Ser. 120, 152.Google Scholar
Niemela, Barbá R., Morrell, N., Corti, M., (1997): in Luminous Blue Variables: Massive Stars in Transition, ASP Conf. Ser. 120,Google Scholar
Taam, R.E., Bodenheimer, P. (1989): ApJ, 337, 849 Google Scholar
Taam, R.E., Bodenheimer, P. (1991): ApJ, 373, 246.CrossRefGoogle Scholar
Terman, J.L., Taam, R.E., Hernquist, L. (1994), ApJ, 422, 729.Google Scholar
White, R.L., Becker, R.H. (1995), ApJ, 451, 352.Google Scholar