Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T10:11:47.288Z Has data issue: false hasContentIssue false

Non Crystallized Regions of White Dwarfs. Thermodynamics. Opacity. Turbulent Convection

Published online by Cambridge University Press:  12 April 2016

I. Mazzitelli*
Affiliation:
Istituto di Astrofisica Spaziale. Consiglio Nazionalt delle Ricerche, C.P. 67, 00044 Frascati.Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of White Dwarf stars along their cooling sequences is governed not only by their thermal content, but also by the rate at which heat flows through the external, partially degenerate and non-isothermal layers. In particular, cooling is found to be largely influenced both by the optical atmosphere, and by the convective envelope. The first one, in fact, determines the internal density stratification, down to the point at which electron degeneracy takes over, while the second one affects the temperature stratification in the same layers. The reliability of the present generation of models of White Dwarf envelopes is discussed, on the grounds of the main physical inputs (thermodynamics, opacity, convection theory), for both H-rich and He-rich surface chemical compositions. The conclusion is that, below Log L/L ≤ −3, we can build little more than test models

Type
Reviews
Copyright
Copyright © Cambridge University Press 1994

References

Caloi, V. and Mazzitelli, I. Astron. Astrophys. 271, 139, (1993)Google Scholar
Canuto, V.M. and Mazzitelli, I. Ap.J. 370, 295, (1991)CrossRefGoogle Scholar
D’Antona, F. and Mazzitelli, I. Astron. Astrophys. 66, 453, (1978)Google Scholar
D’Antona, F. and Mazzitelli, I. Ap.J. 347, 934, (1989)Google Scholar
Fontaine, G. and Michaud, G. Ap.J. 231, 826, (1979)Google Scholar
Huebner, W.F., Mertz, A.L., Magee, N.H. Jr., Argo, M.F., Astrophysical Opacity Library, L.A. 6760, M, (1977)Google Scholar
Iben, I. Jr., McDonald, J. Ap.J. 301, 164, (1986)CrossRefGoogle Scholar
Itoh, N., Kohyama, Y., Matsumoto, J., Seki, M. Ap.J. 258, 758, (1984)Google Scholar
Itoh, N., Mutoh, H., Hikita, A., Ap.J. 395, 622, (1992)Google Scholar
Kettner, K.V., Becker, H.W., Buchman, L., et al., Z. Phys. 308, 73, (1982)Google Scholar
Liebert, J., Fontaine, G., Wesemael, F., Mem. Soc. Astron. Ital., 58 17, (1987)Google Scholar
Liebert, J., Dahn, C. Monet, D.G. Ap.J. 332, 891, (1989)Google Scholar
Magni, G. and Mazzitelli, I. Astron. Astrophys. 72, 134, (1979)Google Scholar
Pelletier, C., Fontaine, G., Wesemael, F., Michaud, G., Wegner, G., Ap.J. 307, 242, (1986)Google Scholar
Rogers, F.J. and Iglesias, C.A., Ap.J. Suppl. 79, 507, (1992)Google Scholar
Wallenborn, J. and Baus, M. Phys. Rev. A, 18, 1737, (1978)Google Scholar
Weidemann, V. Ann. Rev. Asiron. Astrophys. 28, 103, (1990)Google Scholar
Winget, D.E., Van Horn, H.M., Tassoul, M., Hansen, C.J., Fontaine, G., Carrol, B.W. Ap.J. Lett. 252, 65, (1982)CrossRefGoogle Scholar
Winget, D.E., Hansen, C.J., Liebert, J., Van Horn, H.M., Fontaine, G. Ap.J. Lett. 315, 77, (1987)Google Scholar