Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T18:43:23.297Z Has data issue: false hasContentIssue false

A New Nutation Series for a Rigid Earth Model

Published online by Cambridge University Press:  12 April 2016

Torsten Hartmann
Affiliation:
Theoretische Astrophysik, Universität Tübingen Tübingen, Germany
Michael Soffel
Affiliation:
Theoretische Astrophysik, Universität Tübingen Tübingen, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new nutation series for a rigid Earth model was derived from a new and highly accurate tidal potential series. A new second order theory for the nutational amplitudes of rotation-, figure- and angular momentum-axis based on tidal amplitudes is formulated. Amplitudes larger than 0.45μas are taken into account leading to a series with 699 terms. The new series may serve as test of other ones that were recently published in the literature.

Type
Rotation of Solar System Objects
Copyright
Copyright © Kluwer 1997

References

Bretagnon, P.: 1996, this volume.Google Scholar
Fukushima, T.: 1991, Astron. Astrophys. 244, L11L12.Google Scholar
Hartmann, T. and Soffel, M.: 1994, Astron. J. 108, 11151120.CrossRefGoogle Scholar
Hartmann, T. and Wenzel, H.-G.: 1995a, Bulletin d’Information des Marées Terrestres 123, 92789301.Google Scholar
Hartmann, T. and Wenzel, H.-G.: 1995b, Geophys. Res. Lett. 22, 35533556.CrossRefGoogle Scholar
Hartmann, T., Williams, J. and Soffel, M.: 1996, Astron. J. 111, 14001404.CrossRefGoogle Scholar
Hartmann, T.: 1996, “Hochgenaue Nutationsbewegung einer starren Erde aus einer verbesserten Gezeitenpotentialentwicklung’, Ph.D. thesis, Univ. of Tübingen, Germany (in German).Google Scholar
Kinoshita, H.: 1977, Celest. Mech. 15, 277326.CrossRefGoogle Scholar
Kinoshita, H. and Souchay, J.: 1990, Celest. Mech. 48, 187265 (called KS90 in the text).CrossRefGoogle Scholar
Roosbeek, F. and Dehant, V.: 1995, “A harmonic development of the rigid Earth nutations using an analytical method”, in preparation.Google Scholar
Souchay, J. and Kinoshita, H.: 1995, Astron. Astrophys., in press.Google Scholar
Vondrak, J.: 1983, Astron. Inst. Czechosl. 34, 184190 and 311-316.Google Scholar
Williams, J.G.: 1994, Astron. J. 108, 711724.CrossRefGoogle Scholar
Williams, J.G.: 1995, Astron. J. 110, 14201426.CrossRefGoogle Scholar
Woolard, E.W.: 1953, Astron. Papers Am. Ephem. 15, Part 1.Google Scholar
Zhu, S.Y. and Groten, E.: 1989, Astron. J. 98(3), 11041111.CrossRefGoogle Scholar