Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T04:44:09.492Z Has data issue: false hasContentIssue false

Multiple Protostars, Jets, and the Origin of Brown Dwarfs1

Published online by Cambridge University Press:  22 February 2018

Cathie Clarke
Affiliation:
Drs. Reipurth and Clarke each gave an invited talk at the Colloquium. They have, however agreed, with the editors’ consent, to publish their contributions in a single paper of somewhat greater length than the others that derive from invited talks Institute of Astronomy, University of Cambridge, UK
Bo Reipurth
Affiliation:
Drs. Reipurth and Clarke each gave an invited talk at the Colloquium. They have, however agreed, with the editors’ consent, to publish their contributions in a single paper of somewhat greater length than the others that derive from invited talks Institute for Astronomy, University of Hawaii, Honolulu, USA
Eduardo Delgado-Donate
Affiliation:
Institute of Astronomy, University of Cambridge, UK Stockholm Observatory, Stockholm, Sweden

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The observation that young stars are clustered in few body non-hierarchical multiple systems at very young ages has profound consequences for our understanding of the formation of stars, binaries and the disks and planets that may surround them. In this chapter we review theoretical progress made over the last decade in modeling the break up of these natal clusters and discuss a range of observational predictions that arise from these models, relating to the kinematics, binary statistics and possession of disks of both stars and brown dwarfs. We also argue that one of the most spectacular manifestations of dynamical interactions in young multiple systems should be the formation of giant Herbig-Haro flows, and present observational evidence that may be interpreted in this light.

Resumen

Resumen

El hecho de que las estrellas jóvenes se agrupen en sistemas múltiples de pocos cuerpos y no-jerárquicos tiene profundas consecuencias para la comprensión de la formación de las estrellas, de las binarias y de los planetas que pueden circundarlas. En este trabajo, reseñamos los avances teóricos que en los últimos diez años se han hecho para modelar el rompimiento de estos cúmulos madre, y discutimos una serie de predicciones observacionales que surgen de los modelos, en relación con la cinemática, la estadística de las binarias, y la existencia de discos en estrellas y en enanas marrones. Argumentamos que una de las manifestaciones más espectaculares de las interacciones dinámicas en estrellas múltiples jóvenes debería ser la formación de flujos Herbig-Haro gigantescos, y presentamos evidencia observacional que puede ser interpretada en este sentido.

Type
Astrophysical Processes of Multiple Stars in Clusters
Copyright
Copyright © Instituto de Astronomia – Mexico 2004

Footnotes

1

Drs. Reipurth and Clarke each gave an invited talk at the Colloquium. They have, however agreed, with the editors’ consent, to publish their contributions in a single paper of somewhat greater length than the others that derive from invited talks.

References

Allen, C.d, & Poveda, A. 1974, in TheStability of the Solar System and of Small Stellar Systems, ed. Kozai, Y. (IAU Symp. No. 63) (Dordrecht: Reidel), 239 CrossRefGoogle Scholar
Armitage, P.J., Clarke, C.J., & Palla, F. 2003, MNRAS, 342, 1139 CrossRefGoogle Scholar
Artymowicz, P., & Lubow, S.H. 1996, ApJ, 467, L77 Google Scholar
Bate, M.R. 2004, this volumeGoogle Scholar
Bate, M.R., Bonnell, I.A., & Bromm, V., 2002a, MNRAS, 332, L65 Google Scholar
Bate, M.R., Bonnell, I.A., & Bromm, V., 2002b, MNRAS, 336, 705 CrossRefGoogle Scholar
Bate, M.R., Bonnell, I.A., & Bromm, V., 2003, MNRAS, 339, 577 Google Scholar
Bonnell, I.A., Bate, M.R., Clarke, C.J., & Pringle, J.E. 1997, MNRAS, 285, 201 Google Scholar
Bonnell, I.A., Clarke, C.J., Bate, M.R., & Pringle, J.E. 2001, MNRAS, 324, 573 CrossRefGoogle Scholar
Boss, A.P. 2001, ApJ, 551, L167 Google Scholar
Briceno, C., Luhmann, K.L., Hartmann, L., Stauffer, J.R., & Kirkpatrick, J.D. 2002, ApJ, 580, 317 Google Scholar
Clarke, C.J., & Pringle, J.E. 1991, MNRAS, 249, 588 Google Scholar
Delgado-Donate, E.J., Clarke, C.J., & Bate, M.R., 2003, MNRAS, 342, 926 CrossRefGoogle Scholar
Delgado-Donate, E.J., Clarke, C.J., & Bate, M.R., 2004a, MNRAS, 347, 759 CrossRefGoogle Scholar
Delgado-Dońate, E.J., Clarke, C.J., Bate, M.R. & Hodgkin, S.T., 2004b, MNRAS, submittedGoogle Scholar
Devine, D., Reipurth, B., Bally, J., & Balonek, T.J. 1999, AJ, 117, 2931 Google Scholar
Durisen, R., Sterzik, M., & Pickett, B. 2001, A&A, 371, 952 Google Scholar
Elmegreen, B.C. 1999, ApJ, 522, 915 Google Scholar
Ghez, A.M., Neugebauer, G., & Matthews, K. 1993, AJ, 106, 2005 Google Scholar
Gizis, J.E., Kirkpatrick, J.D., Burgasser, A., Reid, I.N., Monet, D.G., Liebert, J., & Wilson, J.C. 2001, ApJ, 551, L163 CrossRefGoogle Scholar
Goodwin, S., Whitworth, A., & Ward-Thompson, D. 2004, A&A, submittedGoogle Scholar
Hodgkin, S.T., Pinfield, D.J., Jameson, R.F., Steele, I.A., Cossburn, M.R., & Hambly, N.C. 1999, MNRAS, 310, 87 CrossRefGoogle Scholar
Jameson, R.F., Dobbie, P.D., Hodgkin, S.T., & Pinfield, D.J. 2003, MNRAS, 335, 853 Google Scholar
Joergens, V., & Guenther, E. 2001, A&A, 379, L9 Google Scholar
Klessen, R. 2001, ApJ, 556, 837 Google Scholar
Klessen, R., Heitsch, F., & Mac Low, M. 2000, ApJ, 535, 887 Google Scholar
Köhler, R., & Leinert, C. 1998, A&A, 331, 977 Google Scholar
Kroupa, P., & Bouvier, J. 2003a, MNRAS, 346, 343 CrossRefGoogle Scholar
Kroupa, P., & Bouvier, J. 2003b, MNRAS, 346, 369 CrossRefGoogle Scholar
Larson, R.B. 2002, MNRAS, 332, 155 CrossRefGoogle Scholar
Lin, D.N.C., Laughlin, G., Bodenheimer, P., & Rozyczka, M. 1998, Science, 281, 2025 Google Scholar
Liu, M.C., Najita, J., & Tokunaga, A.T. 2003, ApJ, 585, 372 Google Scholar
Lucas, P.W., Roche, P.F., Allard, F., & Hauschildt, P.H. 2001, MNRAS, 326, 695 Google Scholar
Marcy, G.W., Cochran, W.D., & Mayor, M. 2000, in Protostars and Planets IV, eds. Mannings, V., Boss, A.P., & Russell, S.S., (Tucson: Univ. of Arizona Press), 1285 Google Scholar
Martín, E.L., Brandner, W., & Basri, G. 1999, Science, 283, 1718 Google Scholar
McDonald, J., & Clarke, C.J. 1993, MNRAS, 262, 800 Google Scholar
McDonald, J., & Clarke, C.J. 1995, MNRAS, 275, 671 Google Scholar
Motte, F., André, P., & Neri, R. 1998, A&A, 336, 150 Google Scholar
Muench, A.A., Alves, J.A., Lada, C.J., & Lada, E.A. 2001, ApJ, 558, L51 Google Scholar
Papaloizou, J.C.B., & Terquem, C. 2001, MNRAS, 325, 221 Google Scholar
Preibisch, T., Stanke, T., & Zinnecker, H. 2003, A&A, 409, 147 Google Scholar
Reipurth, B. 2000, AJ, 120, 3177 Google Scholar
Reipurth, B., & Zinnecker, H. 1993, A&A, 331, 977 Google Scholar
Reipurth, B., & Clarke, C.J. 2001, AJ, 122, 432 Google Scholar
Reipurth, B., & Bally, J. 2001, Ann. Rev. Astron. Astrophys. 39, 403 Google Scholar
Reipurth, B., Rodríguez, L.F., Anglada, G., & Bally, J. 2004, AJ, in pressGoogle Scholar
Sterzik, M., & Durisen, R. 1998, A&A 339, 95 Google Scholar
Sterzik, M., & Durisen, R. 2003, A&A 400,1031 Google Scholar
Tokovinin, A.A. 2004, this volumeGoogle Scholar
van Albada, T.S. 1968, Bull. Astron. Inst. Netherlands, 19, 479 Google Scholar