Published online by Cambridge University Press: 12 April 2016
We are finally on the threshold of obtaining a coherent morphological and physical picture for the local interstellar medium (LISM), especially the region within 300 pc of the Sun. The EUVE is playing a special role in revealing this picture. This instrument can provide direct measurements of the the radiation field that photoionizes both hydrogen and helium. It also can yield direct measurements of the column densities of hydrogen, but especially He I and He II toward nearby white dwarfs. These observations suggest that the ionization in the Local Cloud, the cloud in which the Sun is embedded, is not in equilibrium, but in a recombination phase. Heuristic calculations imply that the the present ionization is due to the passage of shocks, at times greater than 3 × 106 years ago. The origin of these shocks are probably linked to the supernova which was responsible for the expanding nebular complex of clouds know as the Loop I supernova remnant, of which the Local Cloud is a part, extreme- UV radiation field, that which ionizes both hydrogen and helium in the LISM. Of the ISM within 300 pc, the volume appears to be predominantly filled by hot (106 K) coronal gas. This gas is laced with six largescale shell structures with diameters ~100−150 pc including the long-recognized radio loops, Loop I−IV, as well as the Orion-Eridanus and Gum Nebulae are identified. An idea that has evolved in the literature for over two decades is that the kinematically-linked OB associations representing Gould’s Belt, plus the gas and dust of Lindblad’s Ring, require that previous supernova activity and stellar winds carved out a 400–600 pc diameter cavity some 3 to 6 × 107 yr ago. This activity produced a pre-existing low density region, into which the present young loop structures have expanded. The outer boundaries of the identified expanding loop structures, inside this preexisting cavity, delineate the periphery of the the mis-named “local interstellar bubble.” Thus, this picture naturally explains some of the problems often associated with the presence of this low density region exterior to Loop I.