No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to increase our understanding of the processes involved and of the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes. For example, rapid mass loss in the models is a joint consequence of the enormous extension of the atmosphere caused by shocks, and of radiation pressure on grains formed in the cool outer region; it is also affected by thermal relaxation processes, which determine the temperature distribution. The progress and significance of these modeling calculations will be reviewed.