No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
We have calculated evolutionary models of massive stars in the range 15-120 Mʘ from the zero-age sequence up to the end of the carbon burning stage (Maeder, 1981). Three sets of models with different mass loss rates Ṁ have been computed; the adopted parametrisation of Ṁ is fitted on the observations and thus the expression for Ṁ differs according to the location of the stars in the HRD.
In this short note we concentrate on the location of the He-burning stars in the HRD. The helium burning phase, which lasts 8 to 10% of the MS phase, is spent mainly as red supergiants (RSG) and as WR stars (note that for low mass loss, the time spent as A-G supergiants becomes longer).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.