No CrossRef data available.
Article contents
Mass Distribution and Bulk Density Distribution of Interplanetary Dust
Published online by Cambridge University Press: 12 April 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Mass distribution of the interplanetary dust is reexamined taking into account bulk density distribution of the dust and larger particles. It can be shown that the mass index of particles depends on the evolutionary stage of the population and changes along the mass scale. The flattening of the mass distribution at the higher mass range may explain the problem of the equilibrium between the source and sink of the interplanetary dust.
- Type
- Meteoroids and Meteor Streams
- Information
- International Astronomical Union Colloquium , Volume 126: Origin and Evolution of Interplanetary Dust , 1991 , pp. 331 - 334
- Copyright
- Copyright © Kluwer 1991
References
Ceplecha, Z. (1987) ’Numbers and masses of different populations of sporadic meteoroids from photographic and television records, in Proc. 10th Europ. Regional Astronomy Meeting of the IAU Praha
2, 211–215.Google Scholar
Crifo, J. F. (1987) ’Are cometary dust mass loss rates deduced from optical emissions reliable?’ in Proc. 10th Europ. Regional Astronomy Meeting of the IAU Praha
2, pp. 59–66.Google Scholar
Grün, E. (1987) ’Dynamics of interplanetary dust’ in Proc. 10th Europ. Regional Astronomy Meeting Praha
2, pp. 177–178.Google Scholar
Hajduk, A. (1989) ’Evolution of cometary debris: physical aspects’, IAU Coll. 116: Comets in the Post Halley Era, Bamberg, in press.Google Scholar
Hajduk, A. and Kápišinský, I. (1987) ’The evolution of the mass distribution of cometary particles’, in Symp. on the Diversity and Similarity of Comets, Brussels, ESA SP-278, pp. 441–444.Google Scholar
Hajduková, M., Hajduk, A., Cevolani, G., Formiggini, C. (1987) ’the P/Halley meteor showers in 1985-1986’ Astron. Astrophys.
187, 919–920.Google Scholar
Kapiáinský, I. (1984) ’Nongravitational effects affecting small meteoroids in interplanetary space’, Contrib. Astron. Obs. Skalnaté Pleso
12, 99–111.Google Scholar
Kapišinský, I. (1987) ’Double erosion of dust particles’, Bull. Astron. Czechosl. 38, 7–12.Google Scholar
Liu, C.P. and Kimura, H. (1985) ’On the bimodal nature of the particle-size-distribution function of cometary dust’, Marseille Symp. 9-12 July 1984, Properties and interactionof interplanetary dust, pp. 279–282 (IAU Colloq. No. 85)Google Scholar
McDonnell, J.A.M., et al. (1987) ’The dust distribution within the inter coma of comet P/Halley 1982i: encounter by Giotto’s impact detectors’, Astron. Astrophys. 187, 719–741.Google Scholar
Millman, P. M. (1970) ’Meteor showers and interplanetary dust’, Space Research
X, 260–265.Google Scholar
Millman, P. M. (1975) ’Dust in the Solar System’, The Dusty Universe, McGraw-Hill, New York, 185–209
Google Scholar
Mukai, T. and Fechtig, H. (1983) ’Packing effect of fluffy particles’, Planet. Space Sci. 31, 655–658.Google Scholar
Mukai, T., Fechtig, H., Grün, E., and Giese, R.H. (1989) ’Icy particles from comets’ Icarus
80, 254–266.Google Scholar
Rendtel, j and Knöfel, A. (1989) ’Analysis of annual and diurnal variation of fireball rates and population index of fireballs from different compilations of visual observations’, Bull. Astron. Inst. Czechosl. 40, 53–62.Google Scholar
Šimek, M. (1987) ’Dynamics and evolution of the structure of five meteor streams’, Bull. Astron. Inst. Czechosl.
38, 80–91.Google Scholar
Wyatt, S. P. and Whipple, F. L. (1950) ’The Poynting-Robertson effect on meteor orbits’, Astrophys. J, 111, 134–141.CrossRefGoogle Scholar
You have
Access