Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T03:00:42.777Z Has data issue: false hasContentIssue false

The Magnetosphere of Uranus

Published online by Cambridge University Press:  12 April 2016

W.I. Axford*
Affiliation:
Max-Planck-Institut für Aeronomie, D-3411 Katlenburg-Lindau 3

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The magnetosphere of a planet, as the name implies, is the region surrounding the planet in which the planetary magnetic field plays a dominant role in determining the behaviour of the medium. The inner boundary of a magnetosphere is the surface of the planet if it has no significant atmosphere (as in the case of Mercury), or the lower ionosphere in the case of planets with atmospheres. The outer boundary, usually termed the “magnetopause”, is shaped by stresses exerted by the solar wind, being blunt on the upstream side, with normal stresses playing a dominant role, and extending in a comet-like “magnetotail” on the downstream side away from the Sun largely as a result of the action of shear stresses. The characteristic size of a magnetosphere, namely the distance Lm (in planetary radii) to the subsolar point is determined approximately by balancing solar wind ram pressure and the magnetic pressure:

where n is the ion number density and Vs the speed of the solar wind, m is the average ion mass, Bo the (dipole) field strength at the surface of the planet and C is a constant of order unity.

Type
Present Knowledge of Uranus
Copyright
Copyright © Cambridge University Press 1982

References

(1) Gold, T. (1959). J. Geophys. Res. 64, 1219.Google Scholar
(2) Tsurutani, B.T. and Rodriguez, P. (1981). J. Geophys. Res., in press.Google Scholar
(3) Dungey, J.W. (1961). Phys. Rev. Lett. 6, 47.CrossRefGoogle Scholar
(4) Levy, R.H., Petschek, H.E. and Siscoe, G.L. (1964). A.I.A.A. Jnl. 2, 2065.Google Scholar
(5) Reid, G.C. and Sauer, H.H. (1967). J. Geophys. Res. 72, 4383.Google Scholar
(6) Axford, W.I., Petschek, H.E. and Siscoe, G.L. (1965). J. Geophys. Res. 70, 1231.Google Scholar
(7) Axford, W.I. (1967). Space Sci. Rev. 7, 149.Google Scholar
(8) Akasofu, S.-I. (1968). Polar and Magnetic Substorms, D. Reidel Co., Dordrecht-Holland.Google Scholar
(9) Axford, W.I. (1969). Rev. Geophys. 7, 421.CrossRefGoogle Scholar
(10) Schultz, M. and Lanzerotti, L.J. (1974). “Particle diffusion in the radiation belts”, Springer, New York.Google Scholar
(11) Vasyliunas, V.M. (1972). in Earth’s Magnetospheric Processes, ed. McCormac, B.M., D. Reidel, Dordrecht-Holland, 29.Google Scholar
(12) Swift, D.W. (1979). Rev. Geophys. and Space Sci. 17, 681.Google Scholar
(13) Sarris, E.T. and Axford, W.I. (1979). Nature 277, 460.CrossRefGoogle Scholar
(14) Amano, K. and Tsuda, T. J. Geomag. Geoelec. 30, 27.Google Scholar
(15) Axford, W.I. (1972). NASA SP-308, 609.Google Scholar
(16) Axford, W.I. (1969). J. Geophys. Res. 73, 6855.CrossRefGoogle Scholar
(17) Burch, J.L. (1979). Space Sci. Rev. 23, 449.Google Scholar
(18) Bridge, H.S. et al. (1979). Science 206, 972.CrossRefGoogle Scholar
(19) McDonough, T.R. and Brice, N.M. (1973). Icarus 20, 136.Google Scholar
(20) Ip, W.-H. and Axford, W.I. (1980). Nature 283, 180.Google Scholar
(21) Goldreich, P. and Lynden-Bell, D. (1969). Astrophys. J. 156, 59.Google Scholar
(22) Hamilton, D.C., Gloeckler, G., Krimigis, S.M., Bostrom, C.O., Armstrong, T.P., Axford, W.I., Fan, C.Y., Lanzerotti, L.J. and Hunten, D.M. (1980). Geophys. Res. Lett. 7, 813.CrossRefGoogle Scholar
(23) Axford, W.I. (1970). Particles and Fields in the Magnetosphere, ed. McCormac, B.M., D. Reidel, Dordrecht-Holland, 46.Google Scholar
(24) Axford, W.I. (1976). Proc. S.T.P. Symp. Boulder, J, 270.Google Scholar
(25) Johnson, R.G. (1979). Rev. Geophys. and Space Phys. 17, 696.CrossRefGoogle Scholar
(26) Anderson, K.A. and Lin, R.P. (1969). J. Geophys. Res. 74, 3953.CrossRefGoogle Scholar
(27) Ness, N.F. (1978). Space Sci. Rev. 21, 527.Google Scholar
(28) Simpson, J.A., Eraker, J.H., Lamport, J.E. and Walpole, P.H. (1974). Science 185, 160.CrossRefGoogle Scholar
(29) Suess, S.T. and Goldstein, B.W. (1979). J. Geophys. Res. 84, 3306.Google Scholar
(30) Sullivan, J.D. and Bagenal, F. (1979). Nature 280, 798.Google Scholar
(31) Smith, E.J., Davis, L. and Jones, D.E. (1976). Jupiter, ed. Gehrels, T., U. Arizona Press, 783.Google Scholar
(32) Krimigis, S.M., Carbary, J.F., Keath, E.P., Bostrom, C.O., Axford, W.I., Gloeckler, G., Lanzerotti, L.J. and Armstrong, T.P. (1981). J. Geophys. Res., in press.Google Scholar
(33) Ioanidis, G.A. and Brice, N.M. (1971). Icarus 14, 360.Google Scholar
(34) Mendis, A. and Axford, W.I. (1974). Ann. Rev. Earth and Planet. Sci. 2, 419.Google Scholar
(35) Hill, T.W. (1976). Planet. Space Sci. 24, 1151.Google Scholar
(36) Smith, E.J. et al. (1980). Science 207, 407.Google Scholar
(37) Judge, D.L., Wu, F.M. and Carlson, R.W. (1980). Science 207, 431.Google Scholar
(38) Krimigis, S.M. et al. (1981). Science, in press.Google Scholar
(39) Frank, L.A., Burch, B.G., Ackerson, K.L., Wolfe, J.H. and Mihalov, J.D. (1980). J. Geophys. Res. 85, 5695.CrossRefGoogle Scholar
(40) Simpson, J.A. et al. (1980). Science 207, 411.Google Scholar
(41) Fillius, W., Ip, W.-H. and Mcllwain, C.E. (1980). Science 207, 425.Google Scholar
(42) Van Allen, J.A., Thomsen, M.F., Randall, B.A., Rairden, R.L. and Grosskreutz, C.L. (1980). Science 207, 415.Google Scholar
(43) Brown, L.W. (1976). Astrophys. J. 207, L209.CrossRefGoogle Scholar
(44) Armstrong, T.P., Axford, W.I., Bostrom, C.O., Fan, C.Y., Gloeckler, G., Krimigis, S.M., Lanzerotti, L.J. and Wilkens, D.J. (1975). Proposal for MJU-79 mission.Google Scholar
(45) Bridge, H.S. et al. (1975). Proposal for MJU-79 mission.Google Scholar
(46) Siscoe, G.L. (1971). Planet. Space Sci. 19, 483.Google Scholar
(47) Siscoe, G.L. (1975). Icarus 24, 311.Google Scholar
(48) Beard, D.B., unpublished.Google Scholar
(49) Axford, W.I. (1980). Proc. 10th Texas Symp. on Relativistic Astrophysics, Baltimore.Google Scholar