Published online by Cambridge University Press: 12 April 2016
In situ observations of comet Halley provided the first photographs of a cometary nucleus and yielded information about its environment, including the emitted gas and dust. The relation between these measurements and properties of and processes on the nucleus is established by theoretical modelling, while laboratory experiments may provide some of the physical parameters needed. In addition, laboratory tests can stimulate new ideas for processes that may be relevant to cometary physics. Processes to be studied in detail by large-scale laboratory experiments may include: (1) heat transport phenomena during sublimation of porous ice-dust mixtures, (2) material modification and chemical fractionation caused by the sublimation processes, (3) buildup and destruction of dust mantles, (4) detailed studies of gas release from mixtures of volatile ices, and (S) the investigation of ice and dust particle release mechanisms. The KOSI-team (Kometensimulation) carried out sublimation experiments with ice-mineral mixtures in a large Space Simulator. During initial experiments, cylindrical samples of 30-cm diameter and 15-cm thickness were irradiated with up to 2700–W/m2 light energy. The samples consisted of water-ice or water- and CO2-ice mineral mixtures. The experiments showed the importance of advection for heat transport into the interior. It was found that the sublimation of CO2 advances into the sample at a higher speed than that of water vapor release. Therefore, emission of volatile gases responded to insolation changes with a time lag of several hours. The ratio of the emitted gas species, as well as the dust-to-gas mass ratio, differs significantly from the values within the sample. A partly permeable refractory mantle of minerals and carbonaceous material developed with time. Dust and ice particle emission has been observed to occur from irradiated dirty ices as well as from dust mantles.