Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:09:59.613Z Has data issue: false hasContentIssue false

Laboratory Simulation of Chemical Interactions of Accelerated Ions with Dust and Ice Grains

Published online by Cambridge University Press:  12 April 2016

K. Rössler*
Affiliation:
Institut für Chemie 1 (Nuklearchemie) der Kernforschungsanlage Jülich GmbH, Postfach 1913 517o Jülich, Federal Republic of Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Energetic ions or atoms in space may undergo hot chemical reactions upon penetration into interplanetary or interstellar dust grains, ice layers, cometary matter, and surfaces of planetary moons. The mechanistic pathways can be different from those of classical ion molecule interactions, photolytical and radiolytical processes. The kinetic energy of the hot reactant facilitates endothermic reactions and those with high energy of activation, among them atom-molecule interactions. The conditions of hot cosmic chemistry are simulated in laboratory experiments in order to obtain insight into the nature of chemical products and the reaction mechanisms of their formation. This paper reviews the methods of ion implantation, nuclear recoil in situ, nuclear recoil implantation, secondary knock-on processes and computer simulation of collision cascades. Carbon and nitrogen impact in frozen H2O, NH3 and CH4 is shown to lead to the formation and radiolytic permutation of a series of organic molecules, among them e.g. formaldehyde, methanol, methylamine, cyanamide, formamidine and guanidine which may act as precursors for biomolecules.

Type
VI. Dust – Plasma Interactions
Copyright
Copyright © Reidel 1985

References

1. Watson, W.D., Rev.Mod.Phys. 48 (1976) 513/52Google Scholar
2. Greenberg, J.M., Sci.American 250 (1984) 96/106Google Scholar
3. Bibring, J.P., Y. Langevin, Maurette, M., Meunier, R., Jouffrey, B., Jouret, C., Earth Planet.Sci.Letters 22 (1974) 2o5/14Google Scholar
4. Maurette, M., Nucl.Instr.Meth. 132 (1975) 579/86Google Scholar
5. Bibring, J.P., Rocard, F., Radiat. Eff. 65 (1982) 159/65Google Scholar
6. Rössier, K., Vogt, M., 7th Int.Conf.Origins of Life, Mainz, FRG, l0-15 July 1983, Abstract Cl-26Google Scholar
7. Rössier, K., Jung, H.-J., Nebeling, B., Adv.Space Res. 1985, in press (COSPAR 1984, F.3.3.1 and F.5.1)Google Scholar
8. Rössier, K., Eich, G., this issueGoogle Scholar
9. Brown, W.L., Lanzerotti, L.J., Johnson, R.E.. Science 218 (1982) 525/31Google Scholar
10. Stöcklin, G., Chemie heißer Atome, Verlag Chemie, Weinheim 1969 (french version: Chimie des atomes chauds, Masson et. Ci., Paris 1971)Google Scholar
11. Rowland, F.S. (ed.), Hot Atom Chemistry Status Report, IAEA, Vienna 1975 Google Scholar
12. Harbottle, G., Maddock, A.G. (eds.), Chemical Effects of Nuclear Transformations in Inorganic Systems, North Holland, Amsterdam 1979 Google Scholar
13. Tominaga, T., Tachikawa, E., Modern Hot Atom Chemistry and its Applications, Springer Verlag, Berlin 1981 Google Scholar
14. Matsuura, T. (ed.), Hot Atom Chemistry, Kodansha, Tokyo 1984 Google Scholar
15. Rössier, K., Lattke, H., Mathias, C., Al Shukri, L.M., Vogt, M., J.Lab.Comp.Radiopharm. 19 (1982) 1618/9Google Scholar
16. Vogt, M., Report Jül-1855 (June 1983)Google Scholar
17. Rössier, K., Vogt, M., Proc. 7th Int.Congr.Radiation Research, Broerse, J.J. et al. (eds.), Martinus Nijhoff Publ., Amsterdam 1983, A6-05Google Scholar
18. Nebeling, B., Report-Jül-1973 (February 1985)Google Scholar
19. Rössier, K., Schurwanz, K., Report-Jűl-1990 (April 1985)Google Scholar
20. Maddock, A.G., in (11), 33/48, and ref. cited hereinGoogle Scholar
21. Metz, W.A., Thomas, E.W., Nucl.Instr.Meth. 194 (1982) 505/8Google Scholar
22. Rössier, K., Manzanares, A.R., Report Jűl-1924 (June 1984)Google Scholar
23. Rössier, K., Manzanares, A.R., Stritzker, B., in Induced Defects in Insulators, Mazzoldi, P. (ed.), Les Editions de Physique, Paris 1984, 193/9Google Scholar
24. Gruen, D.M., Siskind, B., Wright, R.B., J.Chem.Phys. 65 (1976) 363/78Google Scholar
25. Guermazi, M., Thevenard, P., Faisant, P., Blanchin, M.G., C.H.S. Dupuy Rad.Effects 37 (1978) 99Google Scholar
26. Perez, A., Nucl.Instr.Meth. Bi (1984) 621/7Google Scholar
27. Rocard, F., Bibring, J.-P., Phys.Rev.Lett. 48 (1982) 1763/6Google Scholar
28. Bibring, J.P., Langevin, Y., Rocard, F., J.Geophys.Res. 87 Suppl. (1982) A446/50Google Scholar
29. Maddock, A.G., University of Cambridge (U.K.), private communicationGoogle Scholar
30. Evans, I.M., Ph.D.Thesis, University of Cambridge (U.K.) 1970 Google Scholar
31. Bibring, J.-P., Rocard, F., Adv.Space Res., 1985, in press (COSPAR 1984, F.3.3.2)Google Scholar
32. Rössler, K., Batista, M., Nebeling, B., Schurwanz, K., Terra Cognita 5 (1985) 128Google Scholar
33. Dubrin, J., MacKay, C., Wolfgang, R., J.Am.Chem.Soc. 86 (1964) 645Google Scholar
34. Brown, W.L., Augustyniak, W.M., Simmons, E., Marcantonio, K.J., Lanzerotti, L.J., Johnson, R.E., Boring, J.W., Reimann, C.T., Foti, G., Pirronello, V., Nucl.Instr.Meth. 198 (1982) 1/8Google Scholar
35. Pirronello, V., Strazulla, G., Foti, G., Rimini, E., Nuci.Inst.Meth. 182/183 (1981) 315/7Google Scholar
36. Strazulla, G., Pirronello, V., Foti, G., Astr.Astrophys. 123 (1983) 93/7Google Scholar
37. Schou, J., Sφrensen, H., P.Bφrgesen, , Nucl.Instr.Meth. B5 (1984) 44/57Google Scholar
38. Seiberling, L.E., Meins, C.K., Cooper, B.H., Griffith, J.E., Mendehall, M.H., Tombrello, T.A., Nucl.Instr.Meth. 198 (1982) 17/25Google Scholar
39. Haring, R.A., Haring, A., Klein, F.S., Kummel, A.C., de Vries, A.E., Nucl.Instr.Meth. 211 (1983) 529/33Google Scholar
40 Haring, R.A., Kolfschoten, A.W., de Vries, A.E., Nucl.Instr.Meth. B2 (1984) 544/9Google Scholar
41. de Vries, A.E., Pedrys, R., Haring, R.A., Haring, A., Saris, F.W. Nature 311 (1984) 40CrossRefGoogle Scholar
42. Lanzerotti, L.J., Brown, W.L., Marcantonio, K.J., Johnson, R.E., Nature 312 (1984) 139/40Google Scholar
43. Roth, J., Topics in Applied Physics 52 (1983) 91/146Google Scholar
44. Vietzke, E., Flaskamp, K., Philipps, V., J.Nucl.Mat. 111/112 (1982) 763/8Google Scholar
45. Vietzke, E., Flaskamp, K., Philipps, V., J.Nucl.Mat. 128/129 (1984) 564/9Google Scholar
46. Vietzke, E., Flaskamp, K., Philipps, V., J.Nucl.Mat. 128/129 (1984) 545/550Google Scholar