Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T10:52:01.206Z Has data issue: false hasContentIssue false

Kinematical Relativistic Corrections for Earth’s Rotation Parameters

Published online by Cambridge University Press:  12 April 2016

V.A. Brumberg
Affiliation:
Institute of Applied Astronomy, 191187 St. Petersburg, Russia
Pierre Bretagnon
Affiliation:
Institut de mécanique céleste, 75014 Paris, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dynamical theories of the Earth’s rotation like SMART97 (Bretagnon et al., 1998) are to be considered in a DGRS (dynamically nonrotating geocentric reference system) (Brumberg et al., 1996). Such a theory gives the explicit expressions in terms of TCG (Geocentric Coordinate Time) of three Euler angles relating a DGRS to the ITRS (International Terrestrial Reference System). These angular quantities together with their TCG derivatives enable one to get all Earth’s rotation parameters. At the same time, the analysis of observations result in the values for slightly different angles and their TCG derivatives characterizing the relationship between the ITRS and a KGRS (kinematically nonrotating geocentric reference system). The differences between these two sets of six quantities represent kinematical relativistic corrections (due to geodesic precession, geodesic nutation and luni-planetary terms). The paper presents these differences computed by means of the VSOP87 series (Bretagnon and Francou, 1988). In particular, in analysing observations at the microarcsecond level these expressions will permit an experimental check of geodesic precession in a more direct manner than it is done nowadays (Bertotti et al., 1987).

Type
Section 3. Relativistic Considerations
Copyright
Copyright © US Naval Observatory 2000

References

Bertotti, B., Ciufolini, I., and Bender, P.L., 1987, Phys. Rev. Lett, 58, 1062. CrossRefGoogle Scholar
Bretagnon, P. and Francou, G., 1988, Astron. Astrophys., 202, 309.Google Scholar
Bretagnon, P., Rocher, P., and Simon, J.-L., 1997, Astron. Astrophys., 319, 305.Google Scholar
Bretagnon, P., Francou, G., Rocher, P., and Simon, J.-L., 1998, Astron. Astrophys., 329, 329.Google Scholar
Brumberg, V.A., 1995, J. of Geodynamics, 20, 181.CrossRefGoogle Scholar
Brumberg, V.A., 1997a, in Dynamics and Astrometry of Natural and Artificial Celestial Bodies (IAU Colloquium No. 165, Poznan, 1996, eds. Wytrzyszczak, I.M., Lieske, J.H. and Feldman, R.A.), Kluwer, 439.CrossRefGoogle Scholar
Brumberg, V.A., 1997b, Notes Sci. et Tech. du BDL, S057, Paris, 1.Google Scholar
Brumberg, V.A., Bretagnon, P., and Francou, G., 1992, Journées 1991, ed. Capitaine, N., Obs. de Paris, 141.Google Scholar
Brumberg, V.A., Bretagnon, P., and Guinot, B., 1996, Celest. Mech., 64, 231.CrossRefGoogle Scholar
Klioner, S.A., 1997, in Dynamics and Astrometry of Natural and Artificial Celestial Bodies (IAU Colloquium No. 165, Poznan, 1996, eds. Wytrzyszczak, I.M., Lieske, J.H. and Feldman, R.A.), Kluwer, 383.CrossRefGoogle Scholar
Klioner, S.A. and Voinov, A.V., 1993, Phys. Rev. D, 48, 1451. CrossRefGoogle Scholar
Smart, W.M., 1953, Celestial Mechanics, Longmans, London Google Scholar
Tisserand, F., 1891, Traité de Mécanique Céleste, Gauthier-Villars, Paris, t. IIGoogle Scholar