Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T15:40:21.892Z Has data issue: false hasContentIssue false

Irradiation Effects on Comets and Cometary Debris

Published online by Cambridge University Press:  12 April 2016

G. Strazzulla
Affiliation:
Istituto di Astronomia , Citta’ UniversitariaViale A. Doria 6 I-95125 Catania, Italy
R.E. Johnson
Affiliation:
Dept. of Engineering and Engineering Physics, University of VirginiaCharlottesville, VA 22901, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the last 10 years, many experimental results have been obtained on the chemical and physical changes induced by ion and electron irradiation of materials relevant to comets. Those results are reviewed here, together with their physical interpretation and their relevance for cometary astrophysics. Cometary material is, from the time of its origin, altered by the large amount of energy deposited by energetic ions. Four phases of the irradiation history are considered: the pre-cometary phase, during which interstellar dust is bombarded by cosmic-ray ions; the accretion phase, during which comets are built up, possibly in an environment rich in fast ions (T-Tau phase); the cometary phase, during which the outer layers of the comets are irradiated by galactic ions in the Oort cloud; and the post-cometary phase, during which dust, lost from the comet, is bombarded by solar ions.

The relevant applications of laboratory results are reviewed. In particular, the ability of ion irradiation of simple carbon-containing ices to produce complex refractory organic materials is discussed. In the Oort cloud, this process can occur several meters into the surface, so that the buildup of a stable organic crust may occur. A comparison of ion irradiation at various stages is also made with other models for the production of organics.

Type
Section II: Laboratory Studies and Simulations
Copyright
Copyright © Kluwer 1991

References

Allen, D.A., and Wickramasinghe, D.T. (1987). ‘Discovery of organic grains in comet Wilson.Nature 329, 615616.CrossRefGoogle Scholar
Andersen, H.H., and Bay, H.L. (1981). ‘Sputtering yield measurements.’ In Sputtering by Particle Bombardment Behrisch, I.R. (ed.), Springer-Verlag, Berlin, pp. 145218.Google Scholar
Andronico, G., Baratta, G.A., Spinella, F., and Strazzulla, G. (1987). ‘Optical evolution of laboratory-produced organics: Applications to Phoebe, Iapetus, outer belt asteroids and cometary nuclei.Astron. Astrophys. 184, 333336.Google Scholar
Baas, F., Geballe, T.R., and Walther, D.M. (1986). ‘Spectroscopy of the 3.4 micron emission feature in comet Halley.’ Astrophys. J. Lett. 311, L97-L101.Google Scholar
Betz, G., and Wehner, G.K. (1983). ‘Sputtering of multicomponent materials.’ In Sputtering by Particle Bombardment II, Behrisch, R. (ed.), Springer-Verlag, Berlin, pp. 1190.Google Scholar
Boring, J.W., Nansheng, Z., Chrisey, D.B., O’Shaughnessey, D.J., Phipps, J.A., and Johnson, R.E. (1985). ‘The production of S2 by keV ion bombardment.’ In Asteroids, Comets and Meteors II, Lagerkvist, C.I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), University of Uppsala Press, Uppsala, pp. 229234.Google Scholar
Bradley, J.P., Brownlee, D.E., and Fraundorf, P. (1984). ‘Discovery of nuclear tracks in interplanetary dust.Science 226, 14321434.CrossRefGoogle ScholarPubMed
Bregman, J.D., et al. (1987). ‘Airborne and ground based spectrophotometry of comet P/Halley from 5-13 micrometers.Astron. Astrophys. 187, 616620.Google Scholar
Brown, W.L., and Johnson, R.E. (1986). ‘Sputtering of ices: A review.Nucl. Instr. and Meth. B 13, 295303.CrossRefGoogle Scholar
Brown, W.L., Augustyniak, W.M., Lanzerotti, L.J., Johnson, R.E., and Evatt, R.(1980). ‘Linear and non linear processes in the erosion of H2O ice by fast light ions.Phys. Rev. Lett. 45, 16321635.CrossRefGoogle Scholar
Brown, W.L., Lanzerotti, L.J., and Johnson, R.E. (1982a). ‘Fast ion bombardment of ices and its astrophysical implications.’ Science 218, 525531.CrossRefGoogle ScholarPubMed
Brown, W.L., Augustyniak, W.M., Simmons, E., Marcantonio, K.J., Lanzerotti, L.J., Johnson, R.E., Boring, J.W., Reimann, C.T., Foti, G., and Pirronello, V. (1982b). ’Erosion and molecular formation in condensed gas films by electronic energy loss of fast ions.Nucl. Instr. Methods 198, 18.CrossRefGoogle Scholar
Brown, W.L., Foti, G., Lanzerotti, L.J., Bower, J.E., and Johnson, R.E. (1987).‘Delayed emission of hydrogen from ion bombardment of solid methane.’ Nucl. Instr. Methods B 19 20, 899902.Google Scholar
Chrisey, D.B., Boring, J.W., Johnson, R.E., and Phipps, J.A. (1988). ‘Molecular ejec tion from low temperature sulfur by keV ions.Surf. Sci. 195, 594618.Google Scholar
Chrisey, D.B., Brown, W.L., and Boring, J.W. (1989). ‘Electronic excitation of con densed CO: Sputtering and chemical change.’ Surf. Sci., in press.Google Scholar
Chyba, C., and Sagan, C. (1987). ‘Infrared emission by organic grains in the coma of comet Halley.Nature 330, 350353.CrossRefGoogle Scholar
Chyba, C., and Sagan, C. (1988). ‘Cometary organic matter still a contentious issue.Nature 332, 592 Google Scholar
Combes, M., et al. (1986). ‘Infrared sounding of comet Halley from Vega 1.Nature 321, 266268.CrossRefGoogle Scholar
Combi, M.R. (1987). ‘Sources of cometary radicals and their jets: Gases or grains.Icarus 71, 178191.Google Scholar
Cosmovici, C., and Ortolani, S. (1984). ‘Detection of new molecules in the visible spec trum of comet IRAS-Araki-Alcock (1984).Nature 310, 122124.CrossRefGoogle Scholar
de Jong, T., and Kamijo, F., (1973). ‘Growth and destruction of interstellar grains in the presence of low-energy cosmic rays.Astron. Astrophys. 25, 363370.Google Scholar
Donn, B. (1976). ‘The nucleus: Panel discussion.’ In The Study of Comets B. Donn et al. (eds.), NASA SP-393, pp. 611621.Google Scholar
Donn, B., and Hughes, D. (1986). ‘A fractal model of a cometary nucleus formed by ran dom accretion.’ ESA SP-250, vol. III, pp. 523524.Google Scholar
Draganie, I.G., Draganie, Z.D., and Vujosevic, S.I. (1984). ‘Some radiation-chemical aspects of chemistry in cometary nuclei.Icarus 60, 464475.Google Scholar
Fechtig, H., and Mukai, T. (1985). ‘Dust of variable porosities (densities) in the Solar System.’ In Ices in the Solar System Klinger, J. et al. (eds.), D. Reidel Publ. Co., Dordrecht, pp. 251259.Google Scholar
Feigelson, E.D. (1982). ‘X-ray emission from young stars and implications for the early Solar System.Icarus 51, 155163.CrossRefGoogle Scholar
Field, G.B., Goldsmith, D.W., and Habing, H.J. (1969). ‘Cosmic-ray heating of inter stellar gas.Astrophys. J. Lett. 155, L149L154.CrossRefGoogle Scholar
Foti, G., Calcagno, L., Sheng, K.L., and Strazzulla, G. (1984). ‘Micrometre-sized polymer layers synthesized by MeV ions impinging on frozen methane.Nature 310, 126128.CrossRefGoogle Scholar
Foti, G., Calcagno, L., Zhu, F.Z., and Strazzulla, G. (1987). ‘Chemical evolution of solid methane by keV ion bombardment.Nucl. Instr. Methods in Phys. Res. B24-25, 522525.CrossRefGoogle Scholar
Gombosi, T.I., and Houpis, H.L.F. (1986). ‘An icy-glue model of cometary nuclei.Nature 324, 4344.Google Scholar
Greenberg, J.M. (1982). ‘What are comets made of? A model based on interstellar dust.’ In Comets, Wilkening, L.L. (ed.), University of Arizona Press, Tucson, pp. 131163.Google Scholar
Greenberg, J.M., and Zhao, N. (1988). ‘Cometary organics.Nature 331, 124 Google Scholar
Hanner, M.S., Knacke, R., Sekanina, Z., and Tokunaga, A.T. (1985). ‘Dark grains in comet Crommelin.Astron. Astrophys. 152, 177181.Google Scholar
Haring, R.A., Haring, A., Klein, F.S., Kummel, A.C., and de Vries, A.E. (1983). ’Reactive sputtering of simple condensed gases by keV heavy ion bombardment.Nucl. Instrum. Methods 211, 529538.Google Scholar
Harris, A.W. (1978). ‘Dynamics of planetesimals formation and planetary accretion.’ In the Origin of the Solar System, Dermott, S.F. (ed.), Wiley, New York, pp. 469492.Google Scholar
Hart, E.J., and Platzman, R.L. (1961). ‘Radiation chemistry’ In Physical Mechanisms in Radiation Biology 1, Academic Press, New York, pp. 93120.Google Scholar
Hoyle, F., and Wickramasinghe, N.C. (1985). Living Comets. University College Press, London.Google Scholar
Hoyle, F., and Wickramasinghe, N.C. (1987). ‘Organic dust in comet Halley.Nature 328, 117.CrossRefGoogle Scholar
Huebner, W.F. (1987). ‘First polymer in space identified in Comet Halley.Science 237, 628630.CrossRefGoogle ScholarPubMed
Jessberger, E.K., Cristoforidis, A., and Kissel, J. (1988). ‘Aspects of the major element composition of Halley’s dust.Nature 332, 691695.Google Scholar
Johnson, R.E. (1985). ‘Comment on the evolution of interplanetary grains.’ In Ices in the Solar System Klinger, J. et al. (eds.), D. Reidel Publ. Co., Dordrecht, pp. 337339.Google Scholar
Johnson, R.E. (1989a). Energetic Charged-Particle Interactions With Atmospheres and Surfaces. Springer-Verlag, Berlin, in press.Google Scholar
Johnson, R.E. (1989b). ‘Laboratory simulations: The primordial comet mantle.’ In the NASA publication for the Comet Sample Return Conference, Milipitas, 1989, in press.Google Scholar
Johnson, R.E., and Lanzerotti, L.J. (1986). ‘Ion bombardment of interplanetary dust.Icarus 66, 619624.Google Scholar
Johnson, R.E., Lanzerotti, L.J., Brown, W.L., Augustyniak, W.M., and Mussil, C. (1983). ‘Charged particle erosion of frozen volatiles in ice grains and comets.Astron. Astrophys. 123, 343346.Google Scholar
Johnson, R.E., Lanzerotti, L.J., and Brown, W.L. (1984). ‘Sputtering processes: Erosion and chemical change.’ Adv. Space Res. 4, 4151.CrossRefGoogle Scholar
Johnson, R.E., Barton, L.A., Boring, J.W., Jesser, W.A., Brown, W.L., and Lanzerotti, L.J. (1985). ‘Charged particle modification of ices in the Jovian and Saturnian sys tems.’ In Ices in the Solar System, J. Klinger et al. (eds.), D. Reidel Publ. Co., Dordrecht, pp. 301316.Google Scholar
Johnson, R.E., Cooper, J.F., Lanzerotti, L.J., and Strazzulla, G. (1987). ‘Radiation formation of a non-volatile comet crust.’ Astron. Astrophys. 187, 889892.Google Scholar
Jull, A.J.T., Wilson, G.C., Long, J.V.P., Reed, S.J.B., and Pillinger, C.T. (1980). ‘Sputtering rates of minerals and implications for abundances of solar elements in lunar samples.Nucl. Instr. Methods 168, 357365.Google Scholar
Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Calcott, T.A., and Williams, M.W. (1984). ‘Optical constants of organic tholins produced in a simulated Titanian atmo sphere from X-ray to microwave frequencies.Icarus 60, 127137.CrossRefGoogle Scholar
Kissel, J., and Krueger, F.R. (1987a). ‘The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1.Nature 326, 755760.Google Scholar
Kissel, J., and Krueger, F.R. (1987b). ‘Organic dust in comet Halley.Nature 328, 117.Google Scholar
Kissel, J., et al. (1986a). ‘Composition of comet Halley dust particles from Vega obser vations.Nature 321, 280282.Google Scholar
Kissel, J., et al. (1986b). ‘Composition of comet Halley dust particles from Giotto obser vations.Nature 321, 336337 Google Scholar
Knacke, R.F., Brooke, T.Y., and Joyce, R.R. (1987). ‘The 3.2-3.6 μm emission fea tures in comet P/Halley: Spectral identification and similarities.Astron. Astrophys. 187, 625628.Google Scholar
Lanzerotti, L.J., Brown, W.L., Poate, C.M., and Augustyniak, W.M. (1978). ‘Low energy cosmic ray erosion of ice grains in interplanetary and interstellar media.Nature 272, 431433.Google Scholar
Lanzerotti, L J., Brown, W.L., and Johnson, R.E. (1985). ‘Laboratory studies of ion irradiation of water, sulfur dioxide, and methane ices.’ In Ices in the Solar System, Klinger, J. et al. (eds.), D. Reidel Publ. Co., Dordrecht, pp. 317333.CrossRefGoogle Scholar
Lanzerotti, L.J., Brown, W.L., and Marcantonio, K.J. (1987). ‘Experimental study of erosion of methane ice by energetic ions and some considerations for astrophysics.Astrophys. J. 313, 910922.Google Scholar
Leger, A., Jura, M., and Amont, A. (1985). ‘Desorption from interstellar grains.Astron. Astrophys. 144, 147160.Google Scholar
Le Sergeant d’Hendecourt, L.B., and Lamy,, Ph. L. (1980). ‘On the size distribution and physical properties of interplanetary dust grains.Icarus 43, 350372.Google Scholar
Littmark, U., and Ziegler, J.F. (1980). Handbook of Range Distributions for Energetic Ions in All Elements. Pergamon, Elmsford, New York.Google Scholar
Mazzoldi, P., and Arnold, G.W. (1987). Ion Beam Modification of Insulators. Elsevier, Amsterdam.Google Scholar
Melcher, C.L., LePoire, D.J., Cooper, B.H., and Trombello, T.A. (1982). ‘Erosion of frozen sulfur dioxide by ion bombardment: Application to IO.Geophys. Res. Lett. 9, 11511154.Google Scholar
Mitchell, D.L. et al. (1987). ‘Evidence for chain molecules enriched in carbon, hydrogen and oxygen in comet Halley.Science 237, 626628.Google Scholar
Moore, M.H. (1982). ‘Studies of proton-irradiated cometary-type ice mixtures.’ Ph.D. thesis, University of Maryland, College Park, Maryland.Google Scholar
Moore, M.H., and Donn, B. (1982). ‘The infrared spectrum of a laboratory synthesized residue: Implication for the 3.4 μm interstellar absorption feature.Astrophys. J. 257, L47L50.Google Scholar
Moore, M.H., Donn, B., Khanna, R., and A’Hearn, M.F. (1983). ‘Studies of proton-irradiated cometary-type ice mixtures.Icarus 54, 388405.Google Scholar
Moroz, V.I., et al. (1987). ‘Detection of parent molecules in comet P/Halley from IKS- Vega experiment.Astron. Astrophys. 187, 513518.Google Scholar
Mukai, T., and Schwehm, G. (1981). ‘Interaction of grains with the solar energetic parti cles.Astron. Astrophys. 95, 373382.Google Scholar
Mumma, M.J., Blass, W.E., Weaver, H.A., and Larson, H.P. (1989). ‘Measurements of the ortho-para ratio and the nuclear spin temperatures of water vapour in comet Halley and Wilson (1986i) and the implication for their origin and evolution.’ Submitted.Google Scholar
O’Shaughnessy, D.J., Boring, J.W., Philipps, J.A., Johnson, R.E., and Brown, W.L. (1986). ‘Sputtering of rare gas solids by keV ions.Nucl. Instr. and Meth. B13, 304308.CrossRefGoogle Scholar
Pirronello, V., and Lanzafame, G. (1989). ‘Molecules synthesized by cosmic rays in cometary nuclei: A tool to estimate their low energy spectrum.’ Astrophys. J., in press.CrossRefGoogle Scholar
Pirronello, V., Brown, W.L., Lanzerotti, L.J., Marcantonio, K.J., and Simmons, E.(1982). ‘Formaldehyde formation in a H2O/CO2 ice mixture under irradiation by fast ions.Astrophys. J. 262, 636640.Google Scholar
Pirronello, V., Strazzulla, G., Foti, G., Brown, W.L., and Lanzerotti, L.J. (1984).’Formaldehyde formation in cometary nuclei.Astron. Astrophys. 134, 204206.Google Scholar
Prialnik, D., and Bar-Nun, A. (1988). ‘The formation of a permanent dust mantle and its effect on cometary activity.Icarus 74, 272283.CrossRefGoogle ScholarPubMed
Reimann, C.T., Boring, J.W., Johnson, R.E., Garret, J.W., Farmer, K.R. and Brown, W.L. (1984). ‘Ion-induced molecular ejection from D2O ice.Surf. Sci. 147, 227240.Google Scholar
Rickman, H. (1986). ‘Masses and densities of comets Halley and Kopff.’ In The Comet Nucleus Sample Return Mission, ESA SP-249, pp. 195205.Google Scholar
Rickman, H. (1987). ‘Physical evolution of comets.’ In Proc. 10th European Astronomy Meeting of the IAU, Prague 1987.Google Scholar
Rickman, H., and Fernandez, J.A. (1986). ‘Formation and blowoff of a cometary dust mantle.’ In The Comet Nucleus Sample Return Mission, ESA SP-249, pp. 185195.Google Scholar
Ryan, M.P. Jr., and Draganie, L.G. (1986). ‘An estimate of the contribution of high energy cosmic-ray protons to the absorbed dose inventory of a cometary nucleus.Astrophys. Space. Sci. 125, 4968.CrossRefGoogle Scholar
Sack, N., Schuster, R., Hoffman, A., and Schneider, H.J. (1988). ‘Production of amines by proton bombardment of simple condensed gases.Icarus 76, 110117.Google Scholar
Sagdaeev, R.Z., Elyasberg, P.E., and Moroz, V.I. (1988). ‘Is the nucleus of comet Halley a low density body?Nature 331, 240242.Google Scholar
Stern, S.A. (1988). ‘Collisions in the Oort cloud.Icarus 73, 499507.CrossRefGoogle Scholar
Stern, S.A., and Shull, M.J. (1988). ‘The relevance of supernovas and passing stars on comets.Nature 332, 407411.Google Scholar
Strazzulla, G. (1985). ‘Modifications of grains by particle bombardment in the early Solar System.Icarus 61, 4856.Google Scholar
Strazzulla, G. (1986). ‘“Primitive” galactic dust in the Solar System?Icarus 67, 6370.Google Scholar
Strazzulla, G. (1988). ‘Ion bombardment: Techniques, materials and applications.’ In Experiments on Cosmic Dust Analogues, Bussoletti, E. et al. (eds.), Kluwer Acad. Publ., Dordrecht, pp. 103113.Google Scholar
Strazzulla, G., Calcagno, L., and Foti, G. (1983a). ‘Polymerization induced on interstel lar grains by low energy cosmic rays.M.N.R.A.S. 204, 59p62p.Google Scholar
Strazzulla, G., Pirronello, V., and Foti, G. (1983b). ‘Physical and chemical effects induced by energetic ions on comets.Astron. Astrophys. 123, 9397.Google Scholar
Strazzulla, G., Calcagno, L., and Foti, G. (1984). ‘Build up of carbonaceous material by fast protons on Pluto and Triton.Astron. Astrophys. 140, 441444.Google Scholar
Strazzulla, G., Calcagno, L., Foti, G., and Sheng, K.L. (1985). ‘Interaction between solar energetic particles and interplanetary grains.’ In Ices in the Solar System, Klinger, J. et al. (eds.), D. Reidel Publ. Co., Dordrecht, pp. 73285.Google Scholar
Strazzulla, G., Torrisi, L., and Foti, G. (1988). ‘Light scattering from ion irradiated frozen gases.Europhys Lett. 7(5), 431434.CrossRefGoogle Scholar
Tokunaga, A.T., Nagata, T., and Smith, R.G. (1987). ‘Detection of a new emission band at 2.8μ in comet P/Halley.Astron. Astrophys. 187, 519522.Google Scholar
Torrisi, L., Coffa, S., Foti, G., and Strazzulla, G. (1986). ‘Sulphur erosion by 1.0 MeV helium ions.Radiation Eff. 100, 6169 Google Scholar
Torrisi, L., Coffa, S., Foti, G., Johnson, R.E., Chrisey, D.B., and Boring, J.W. (1988). ‘Threshold dependence in the electronic sputtering of condensed sulfur.Phys. Rev. B 38, 15161519.Google Scholar
Vanysek, M.K., and Wickramasinghe, N.C. (1975). ‘Formaldehyde polymers in comets.Astrophys. Space Sci. 33, L19L28.Google Scholar
Watson, W.D. (1975). ‘Physical processes for the formation and destruction of interstellar molecules.’ In Atomic and Molecular Physics and the Interstellar Matter, Balian, R. et al. (eds.), North Holland Publ. Co., Amsterdam, pp. 177271.Google Scholar
Weissman, P.R. (1986). ‘Are cometary nuclei primordial rubble piles?Nature 320, 242244.Google Scholar
Whipple, F.L. (1950). ‘A comet model: The acceleration of comet Encke.Astrophys. J. 111, 375394.Google Scholar
Whipple, F.L. (1972). ‘The origin of comets.’ In The Motion, Evolution of Orbits and Origin of Comets, IAU Symp. 45, D. Reidel Publ. Co., Dordrecht, pp. 401-08.Google Scholar
Whipple, F.L. (1977). ‘The constitution of cometary nuclei.’ In Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins, Delsemme, A.H. (ed.), University of Toledo, Toledo, Ohio, pp. 2532.Google Scholar
Wickramasinghe, D.T., and Allen, D.A. (1986). ‘Discovery of organic grains in comet Halley.Nature 323, 4446.Google Scholar
Wood, J.A. (1986). ‘Comet nucleus models: A review.’ In The Comet Nucleus Sample Return Mission, ESA SP-249, pp. 123131.Google Scholar
Worden, S.P., Schneeberger, T.J., Kuhn, J.R., and Africano, J.L. (1981). ‘Flare activity of T Tauri stars.Astrophys. J. 244, 520527.Google Scholar
Yamamoto, T., Nakagawa, N., and Fukui, Y. (1983). ‘The chemical composition and thermal history of the ice of a cometary nucleus.Astron. Astrophys. 122, 171176.Google Scholar