Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T10:42:37.113Z Has data issue: false hasContentIssue false

Infrared observations of circumstellar ejecta around Luminous Blue Variables

Published online by Cambridge University Press:  12 April 2016

Peter J. McGregor*
Affiliation:
Mount Stromlo and Siding Spring ObservatoriesInstitute of Advanced StudiesThe Australian National UniversityGPO Box 4, A.C.T. 2601, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent infrared spectroscopy and imaging of LBVs lead to the following results. CO overtone emission at 2.3 μm has been found in 13 LBVs in the Galaxy and the LMC. This emission is collisionally excited in warm (3000 – 5000 K), dense (NH > 1010 cm-3) circumstellar material. Circumstellar disks offer favorable conditions for the formation and excitation of CO molecules and are very likely the location of the observed emission. It is proposed that the LBVs showing 2.3 μm CO overtone emission possess the highest density circumstellar disks.

A group of eight LBVs has been identified in the LMC with He I 2.058 μm emission stronger than H I Brγ. This group includes the CO emission star HD 37836. Helium is over-abundant in these stars with N(He)/N(H) ranging from 0.2 to >0.5. Remarkably five of the helium strong stars belong to the small class of Ofpe/WN9 stars and a further two are probably related to this class.

Slit scans of the galactic LBV AG Car have resolved the far-infrared emission from this star, clearly showing it to originate from cool dust in the circumstellar ring structure. Thermal equilibrium considerations require large grains in the ring in order to match the measured grain temperature and radial distance. Similar slit scans of the galactic B[e] star HD 87643 fail to resolve the far-infrared emission from this star at the 10″ level.

Type
Section I: Main Papers, General Discussions, and Two Panel Discussions
Copyright
Copyright © Kluwer 1989

References

Allen, D. A. 1973, M.N.R.A.S., 161, 145.Google Scholar
Allen, D. A., Jones, T. J., and Hyland, A. R. 1985, Ap. J., 291, 280.Google Scholar
Bohannan, B., and Walborn, N. R. 1988, in preparation.Google Scholar
Chu, Y.-H. 1982, Ap. J., 254, 578.Google Scholar
Glass, I. S. 1974, M.N.R.A.S., 168, 249.Google Scholar
Glass, I. S. 1984, M.N.R.A.S., 209, 759.Google Scholar
Hinkle, K. H., Lambert, D. L., and Snell, R. L. 1976, Ap. J., 210, 684.Google Scholar
Johnson, H. M. 1980, Ap. J., 235, 66.Google Scholar
Krotkov, R., Wang, D., and Scoville, N. Z. 1980, Ap. J., 240, 940.Google Scholar
Kwok, S., Purton, C. R., and FitzGerald, P. 1978, Ap. J. (Letters), 219, L125.Google Scholar
Lambert, D. L., Hinkle, K. H., and Hall, D. N. B. 1981, Ap. J., 248, 638.CrossRefGoogle Scholar
Letzelter, C., Eidelsberg, M., Rostas, F., Breton, J., Thieblemont, B. 1987, Chem. Phys., 114, 273.Google Scholar
Maeder, A. 1983, Astr. Ap., 120, 113.Google Scholar
Maeder, A. 1987, Astr. Ap., 173, 247.Google Scholar
McGregor, P. J., Finlayson, K., Hyland, A. R., Joy, M., Harvey, P. M., and Lester, D. F. 1988, Ap. J., 329, 874.Google Scholar
McGregor, P. J., Hillier, D. J., and Hyland, A. R. 1988, Ap. J., in press.Google Scholar
McGregor, P. J., Hillier, D. J., and Hyland, A. R. 1989, in preparation.Google Scholar
McGregor, P. J., Hyland, A. R., and Hillier, D. J. 1988, Ap. J., 324, 1071.Google Scholar
Ney, E. P. 1972, Pub. A.S.P., 84, 613.Google Scholar
Prantzos, N., Doom, C., Arnould, M., and de Loore, C. 1986, Ap. J., 304, 695.Google Scholar
Scoville, N. Z., Kleinmann, S. G., Hall, D. N. B., and Ridgway, S. T. 1983, Ap. J., 275, 201.Google Scholar
Scoville, N. Z., Krotkov, R., and Wang, D. 1980, Ap. J., 240, 929.Google Scholar
Stahl, O. 1986, Astr. Ap., 164, 321.Google Scholar
Stahl, O., and Wolf, B. 1987, Astr. Ap., 181, 293.Google Scholar
van der Hucht, K. A., Jurriens, T. A., Olnon, F. M., Thé, P. S., Wesselius, P. R., and Williams, P. M. 1985, Astr. Ap., 145, L13.Google Scholar
Viala, Y. P., Letzelter, C., Eidelsberg, M., and Rostas, F. 1988, Astr. Ap., 193, 265.Google Scholar
Viotti, R., Cassatella, A., Ponz, D., and Thé, P. S. 1988, Astr. Ap., 190, 333.Google Scholar
Walborn, N. R. 1977, Ap. J., 215, 53.Google Scholar
Walborn, N. R. 1982, Ap. J., 256, 452.Google Scholar
Walborn, N. R. 1986, in IAU Symposium 116, Luminous Stars and Associations in Galaxies, ed. by deLoore, C. W. H., Willis, A. J., and Laskarides, P., (Dordrecht: Reidel), p. 194.Google Scholar
Weaver, R., McCray, R., Castor, J., Shapiro, P., and Moore, R. 1977, Ap. J., 218, 377.Google Scholar
Wolf, B., and Zickgraf, F.-J. 1986, Astr. Ap., 164, 435.Google Scholar
Zickgraf, F.-J., Wolf, B., Stahl, O., Leitherer, C., and Appenzeller, I. 1986, Astr. Ap., 163, 119.Google Scholar