No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Imaging Spectroscopy is a technique in which a spectrum is obtained for each spatial resolution element across a wide field. The data is essentially 3-D, and may be viewed as a series of monochromatic images, or as a two dimensional array of spectra. A device generating such data may be called an imaging spectrometer. In a previous paper (Atherton, 1983 SPIE 445, 535) three different imaging spectrometers - based on grating, Fabry-Perot and Fourier Transform devices - were compared in terms of their ability to obtain spectral and spatial information over a wide field and broad band, to the same spectral resolution and S/N ratio, using the same detector array. From such a study it is clear that interferometer based devices are significantly faster than conventional grating spectrographs.