Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T03:54:49.998Z Has data issue: false hasContentIssue false

Hydrogen Depletion and the Evolution of Cataclysmic Variables to Low Mass X-Ray Binaries

Published online by Cambridge University Press:  12 April 2016

R.E. Williams
Affiliation:
National Optical Astronomy Observatories, Cerro Tololo Inter-American Observatory, La Serena, Chile
M.M. Phillips
Affiliation:
National Optical Astronomy Observatories, Cerro Tololo Inter-American Observatory, La Serena, Chile
S.R. Heathcote
Affiliation:
National Optical Astronomy Observatories, Cerro Tololo Inter-American Observatory, La Serena, Chile

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Certain cataclysmic variables may evolve into low mass X-ray binaries if the white dwarfs can steadily accrete sufficient mass to exceed the Chandrasekhar limit. We present spectra of a recurrent nova and a low mass X-ray binary which are very similar to each other, and are also unusual for the strengths of the observed He II emission. We suggest that this similarity is not coincidental, but is evidence for an evolutionary link between the two classes of objects. A hydrogen depletion in the accreting gas is implied from the emission line fluxes, and may be an important parameter in determining whether accreted gas remains bound to the white dwarf, enabling eventual core collapse to occur.

Type
VII. Related Objects
Copyright
Copyright © Reidel 1987

References

Bradt, H.V.D., and McClintock, J.E. 1983, Ann. Rev. Astron. Astrophys., 21, 13.Google Scholar
Canizares, C.R., McClintock, J.E., and Grindlay, J.E. 1979, Astrophys. J., 234, 556 Google Scholar
Hanes, D.A. 1985, Monthly Notices Roy. Astron. Soc., 213, 443 Google Scholar
Iben, I., and Tutukov, A.V. 1984, Astrophys. J. Suppl., 54, 335 CrossRefGoogle Scholar
Joss, P.C., and Rappaport, S.A. 1984, Ann. Rev. Astron. Astrophys., 22, 537.Google Scholar
Nomoto, K. 1982, Astrophys. J. 257, 780 CrossRefGoogle Scholar
Nomoto, K., Thielemann, F.K., and Yokoi, K. 1984, Astrophys. J. 286, 644.CrossRefGoogle Scholar
Osterbrock, D.E. 1974, Astrophysics of Gaseous Nebulae, (Freeman: San Francisco).Google Scholar
Robinson, E.L. 1976, Ann. Rev. Astron. Astrophys. 14, 119 Google Scholar
Starrfield, S.G., Sparks, W.M., and Truran, J.W. 1985, Astrophys. J. 291, 136.Google Scholar
Taam, R.E., and van den Heuvel, E.P.J. 1986, Astrophys. J., 305, 235 CrossRefGoogle Scholar
Truran, J.W. 1982, in Essays in Nuclear Astrophysics, eds. Barnes, C., Clayton, D., Schramm, D. (Cambridge University Press: Cambridge), p. 467.Google Scholar
van der Klis, M., Jansen, F., van Paradijs, J., Lewin, W.H.G., Van den Heuvel, E.P.J., Trümper, J.E., Sztajno, M. 1985, Nature, 316, 225.Google Scholar
Warner, B. 1976, in IAU Symp. No. 73: Structure and Evolution of Close Binary Systems, eds. Eggleton, P., Mitton, S., Whelan, J. (Reidel: Dordrecht), p. 85.Google Scholar
Webbink, R.F. 1976, Nature 262, 271 CrossRefGoogle Scholar
Williams, G. 1983, Astrophys. J. Suppl., 53, 523 Google Scholar
Williams, R.E., Sparks, W.M., Gallagher, J.S., Ney, E.P., Starrfield, S.G., and Truran, J.W. 1981, Astrophys. J. 251, 221 CrossRefGoogle Scholar