No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
The recent observations of a highly ionized, X-ray absorbing gas in active galactic nuclei (AGN) suggest a new nuclear component, the so-called ‘warm absorber’. This gas is likely to be at a temperature of ~ 1–2 × 105 K and is most easily detected in the 0.5–10keV range, where several oxygen absorption edges are often observed.
This review describes the properties of warm absorbers and the relation to other nuclear components, such as the broad-line emitting gas. The stability of the gas is a key issue and analysis shows that it is likely to be thermally stable, at the above mentioned temperature. When successful models are compared to the data, they can be used to infer the column density, composition and level of ionization of the X-ray absorbing gas. They also show that, on top of the strong continuum absorption, the gas must emit X-ray lines that are at the limit of detection by present day X-ray instruments.
New calculations of X-ray emission lines emitted by ionized X-ray absorbers are shown and discussed. Various line equivalent widths are defined and examples are shown over a large range of column density and ionization parameter. The equivalent width of the strongest 0.5-5 keV lines is only a few tens of eV, but in cases of obscured X-ray source, like in Seyfert 2s, the lines are measured against the scattered and diffuse radiation with much larger equivalent widths. The X-ray absorbing and emitting gas is responsible also for a fraction of the observed flux of some UV emission lines. It is also the cause of the detection of several UV absorption lines. The calculations predict that some of those absorption lines, in particular 0 VI λ1035, are very sensitive warm-absorber tracers. Thus, analysis of the combined X-ray and UV properties is the best way to identify the location and properties of this gas.
Understanding the origin and properties of warm X-ray absorbers is a major challenge of AGN research. Several new ideas are briefly discussed, trying to relate the location, mass, and motion of this gas to what is known about other observed nuclear components.