Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T08:47:56.209Z Has data issue: false hasContentIssue false

The Hamiltonian Dynamics of The Two Gyrostats Problem

Published online by Cambridge University Press:  12 April 2016

F. Mondejar
Affiliation:
Departamento de Matemática Aplicada, E. T. S.I.I., Universidad de Murcia, Paseo Alfonso XIII, 30203 Cartagena (Murcia), SpainE-mail:[email protected]@plc.um.es
A. Vigueras
Affiliation:
Departamento de Matemática Aplicada, E. T. S.I.I., Universidad de Murcia, Paseo Alfonso XIII, 30203 Cartagena (Murcia), SpainE-mail:[email protected]@plc.um.es

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problem of two gyrostats in a central force field is considered. We prove that the Newton-Euler equations of motion are Hamiltonian with respect to a certain non-canonical structure. The system posseses symmetries. Using them we perform the reduction of the number of degrees of freedom. We show that at every stage of the reduction process, equations of motion are Hamiltonian and give explicit forms corresponding to non-canonical Poissson brackets. Finally, we study the case where one of the gyrostats has null gyrostatic momentum and we study the zero and the second order approximation, showing that all equilibria are unstable in the zero order approximation.

Type
Analytical and Numerical Tools
Copyright
Copyright © Kluwer 1999

References

Duboshin, G.N.: 1976, Celestial Mechanics,14 239 Google Scholar
Aboelnaga, M.Z. and Barkin, Y.V.: 1979, Astronom. Zh., 56, 881 Google Scholar
Barkin, Y.V.: 1980, Pis ‘ma Astron. Zh., 6, 377 Google Scholar
Wang, L.,Krishnaprasad, P.S. and Maddocks, J.H.: 1991, Celestial Mech., 50, 349 Google Scholar
Wang, L. and Chen, P.: 1995, IEEE Transactions on Automatic Control, 10, 1732 Google Scholar
Cid, R. and Vigueras, A.: 1985, Celestial Mech., 36, 135 CrossRefGoogle Scholar
Maciejewski, A.: 1995, Celestial Mech., 63, 1 Google Scholar