Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T08:29:13.764Z Has data issue: false hasContentIssue false

A Global Analysis of The Generalized Sitnikov Problem

Published online by Cambridge University Press:  12 April 2016

Steven R. Chesley*
Affiliation:
Dipartimento di Matematica, Universitá di Pisa, 56127 Pisa, Italy; E-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The isosceles three-body problem with Sitnikov-type symmetry has been reduced to a two-dimensional area-preserving Poincaré map depending on two parameters: the mass ratio, and the total angular momentum. The entire parameter space is explored, contrasting new results with ones obtained previously in the planar (zero angular momentum) case. The region of allowable motion is divided into subregions according to a symbolic dynamics representation. This enables a geometric description of the system based on the intersection of the images of the subregions with the preimages. The paper also describes the regions of allowable motion and bounded motion, and discusses the stability of the dominant periodic orbit.

Type
Analytical and Numerical Tools
Copyright
Copyright © Kluwer 1999

References

Chesley, S. and Zare, K.: 1998, ‘Bifurcations in the Mass Ratio of the Planar Isosceles Three-Body Problem’. In: Roy, A. E. and Steves, B. A. (eds.): Dynamics of Small Bodies in the Solar System.Google Scholar
Chesley, S.R.: 1998, ‘The Isosceles Three-Body Problem: A Global Geometric Analysis’. Ph.D. thesis, University of Texas at Austin.Google Scholar
Dvorak, R. and Sun, Y. S.: 1997, ‘The Phase Space Structure of the Extended Sitnikov Problem’. Celest. Mech. Dyn. Astron. 67, 87106.CrossRefGoogle Scholar
Fransén, A.E.: 1895, ‘Ett Specialfall Af Tre-Koppars-Problemet: Tva Himlakroppar Röra Sig Pa Lika Stora Afstand Fran Den Tredje’. Űfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar 52, 783805.Google Scholar
MacMillan, W. D.: 1913, ‘An Integrable Case in the Restricted Problem of Three Bodies’. Astron. J. 27, 1113.CrossRefGoogle Scholar
Simó, C. and Martínez, R.: 1988, ‘Qualitative study of the planar isosceles three-body problem’. Celest. Mech. 41, 179251.CrossRefGoogle Scholar
Sitnikov, K.: 1961, ‘The Existence of Oscillatory Motions in the Three-Body Problem’. Soviet Phys. Dokl. 5(4, 647650.Google Scholar
Wilczynski, E.J.: 1913, ‘Ricerche Geometriche Intorno al Problema Dei Tre Corpi’. Annali di Matematica, Ser. 3 21, 131.CrossRefGoogle Scholar
Zare, K.: 1976, ‘The Effect of Integrals on the Totality of Solutions of Dynamical Systems’. Celest. Mech. 14, 7383.CrossRefGoogle Scholar
Zare, K.: 1977, ‘Bifurcation Points in the Planar Problem of Three Bodies’. Celest. Mech 16, 3538.CrossRefGoogle Scholar
Zare, K. and Chesley, S.: 1998, ‘Order and Chaos in the Planar Isosceles Three-Body Problem’. Chaos 8(2), 475494.CrossRefGoogle ScholarPubMed