Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T20:50:26.641Z Has data issue: false hasContentIssue false

Fundamentals and Deficiencies of Aperture Synthesis

Published online by Cambridge University Press:  12 April 2016

Edward B. Fomalont*
Affiliation:
National Radio Astronomy Observatory, Green Bank, West Virginia 24944U.S.A.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aperture synthesis is the method used by astronomers to determine the accurate brightness distribution of the radio sky with a resolution much better than that possible with a single large antenna. The technique, now over a decade old, utilizes a large number of connected radio antennas, some of them physically moveable, to follow a region of sky for many hours or days in order to sample the spatial coherence function of the radiation field over a sufficiently large area and with a reasonable filling factor. Landmark references for aperture synthesis are McCready et al. (1947), Stanier (1950), Christiansen and Warburton (1955), Lequeux et al. (1962), Read (1961) and Ryle and Hewish (1960).

Type
Part I: Aperture Synthesis Methods
Copyright
Copyright © Reidel 1979

References

Ables, J.G., 1974, Astron. Astrophys. Suppl., 15, 383.Google Scholar
Baldwin, J.E. and Warner, P.J., 1978, Astron. Astrophys. (in press).Google Scholar
Basart, J.P., Miley, G.K. and Clark, B.G., 1970, IEEE Trans., AP-18, 375.Google Scholar
Bates, R.H.T., 1969, Mon. Not. R. Astron. Soc, 142, 413.Google Scholar
Born, M. and Wolf, E., 1964, Principles of Optics, 2nd ed., Oxford: Pergamon.Google Scholar
Brouw, W.N., 1971, Doctoral dissertation, Leiden University.Google Scholar
Brown, R. Hanbury and Twiss, R.Q., 1954, Phil. Mag. (7), 45, 663.Google Scholar
Christiansen, W.N. and Warburton, J.A., 1955, Aust. J. Phys., 8, 474.Google Scholar
Cochran, W.T. et al., Proc. IEEE, 55, 1967.Google Scholar
ERIM 1977, Study for an Optical Processor System for VLA Radio Telescope System.Google Scholar
Fomalont, E.B., 1973, Proc. IEEE, 61, 1211.Google Scholar
Fomalont, E.B. and Wright, M.C.H., 1974, Galactic and Extragalactic Radio Astronomy, Chap. 10, New York: Springer.Google Scholar
Fort, D.N. and Yee, H.K.C., 1976, Astron. Astrophys., 50, 19.Google Scholar
Glauber, R.J., 1963, Phys. Rev., 130, 2529.Google Scholar
Gordon, R., 1974, IEEE Trans. Nucl. Science, NS-21, 78.Google Scholar
Hamaker, J.P., 1978, Radio Science (in press).Google Scholar
Högbom, J.A., 1974, Astron. Astrophys. Suppl., 15, 417.Google Scholar
Kenderdine, S., 1974, Astron. Astrophys. Suppl., 15, 413.Google Scholar
Lequeux, J., 1962, Ann. Astrophys., 25, 221.Google Scholar
Mandel, L., 1963, Progress in Optics, 2, 181, Amsterdam: North-Holland.Google Scholar
McCready, L.L., Pawsey, J.L. and Payne-Scott, R., 1947, Proc. Roy. Soc, A-190, 357.Google Scholar
Nelder, J.A. and Mead, R., 1965, Computer Journal, 7, 308.CrossRefGoogle Scholar
Read, R.B., 1961, IRE Trans. Ant. Prop., AP-9, 31.Google Scholar
Readhead, A.C.S. and Wilkinson, P.N., 1978, Astrophys. J. (in press).Google Scholar
Ryle, M. and Hewish, A., 1960, Mon. Not. R. Astron. Soc, 120, 220.Google Scholar
Schwarz, U.J., 1978, Astron. Astrophys. (in press).Google Scholar
Stanier, H.M., 1950, Nature, 165, 354.Google Scholar
Steel, W.H., 1967, Interferometry, London: Cambridge Univ. Press.Google Scholar