No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
We have combined IUE spectra with optical spectroscopic and photometric data collected over a few orbits of the symbiotic binary CI Cyg to follow the evolution of a disk and boundary layer during a full activity cycle. Our results indicate an extended optically thin disk during quiescent periods, which evolves into an optically thick state in an eruption; a classical boundary layer at the inner edge of the disk ionizes a surrounding H II region in quiescence, and this emission fades during the rise to visual maximum in outburst. This evolution of Ṁ rivals that observed in classical CVs and pre-main sequence stars, so symbiotic systems like CI Cyg represent another opportunity to study the physics of disk accretion.