Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T10:05:01.923Z Has data issue: false hasContentIssue false

Equation of State of Stellar Plasmas

Published online by Cambridge University Press:  12 April 2016

Forrest J. Rogers*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The equation of state (EOS) of astrophysical plasmas is, for a wide range of stars, nearly ideal; with only small non-ideal Coulomb corrections. Calculating the EOS of an ionizing plasma from a ground state ion, ideal gas model is easy, whereas, fundamental methods to include the small Coulomb corrections are difficult. Attempts to include excited bound states are also complicated by plasma screening and microfield phenomena that weaken and broaden these states. Nevertheless, the high quality of current observational data, particularly seismic, dictates that the best possible models should be used. The present article discusses these issues and describes how they are resolved by fundamental many-body quantum statistical methods. Particular emphasis is placed on the activity expansion method that is the basis of the OPAL opacity code. Some comparisons with standard methods are given.

Type
Reviews
Copyright
Copyright © Cambridge University Press 1994

References

Abe, R., 1959, Theor. Phys. 22, 213 Google Scholar
Alustuey, A., 1994, this volumeGoogle Scholar
Alustuey, A. and Perez, A., 1992, Europhys. Lett. 1, 13 Google Scholar
Bartsch, G.P., and Ebeling, W., 1971, Beitr. Plasma Phys. 11, 393 Google Scholar
Beth, E. and Uhlenbeck, G.E., 1939, Physica 4, 915 Google Scholar
Bolle, D., 1987, Phys. Rev. A36, 3259 CrossRefGoogle Scholar
Bolle, D., 1989, Phys. Rev. A39, 2752 CrossRefGoogle Scholar
Cox, J. and Giuli, R., 1968, Stellar Structure (Gordon and Breach, New York)Google Scholar
Christensen-Dalsgaard, J. and Däppen, W., 1993, Astron. Astrophys. Rev. 4, 267 Google Scholar
Christensen-Dalsgaard, J. and Däppen, W., 1991, in Challenges to Theories of the Structure of Moderate-Mass Stars, eds. Gough, D.O. and Toomre, J. (Lecture Notes in Physics, 388, Springer, Heidelberg)Google Scholar
Däppen, W., Anderson, L.S., and Mihalas, D., 1987, Ap. J. 319, 195 CrossRefGoogle Scholar
Däppen, W., 1992, Rev. Mexicana Astron. & Astrof. 23, 1144 Google Scholar
Dashen, R., Ma, S.K., and Bernstein, H.J., 1969, Phys. Rev. 187, 345 Google Scholar
DeWitt, H.E., 1966, J. Math. Phys. 7, 6169 CrossRefGoogle Scholar
Dziembowski, W.A., Pamyatnykh, A.A., and Sienkiewicz, R., 1992, Acta Astronomica 14, 5 Google Scholar
Ebeling, W., 1974, Physica 73, 573 CrossRefGoogle Scholar
Ebeling, W., Kraeft, W.D., and Kremp, D., 1977, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids (Berlin, Akademie-Verlag; New York, Plenum)Google Scholar
Eggelton, P., Faulkner, J. and Flannery, G.P., 1973, A&A 23, 261 Google Scholar
Erskine, D., Rosznyai, B., and Ross, M., 1994, JQSRT 50 Google Scholar
Goldsmith, S., Griem, H.E., and Cohen, L., 1984, Phys. Rev. A30, 2775 CrossRefGoogle Scholar
Graboske, H.C., and DeWitt, H.E., 1974 (unpublished)Google Scholar
Guenther, D.B., 1992, Nature 359, 585 CrossRefGoogle Scholar
Hill, T.L., Statistical Mechanics (McGraw-Hill, New York, 1956), Chap. 5Google Scholar
Hummer, D.G., and Mihalas, D., 1988, Ap. J. 331, 794 Google Scholar
Iglesias, C.A., Rogers, F.J., and Wilson, B.G., 1987, Ap. J. (Letters), 322, L45 CrossRefGoogle Scholar
Iglesias, C.A. and Rogers, F.J., 1993, ApJ 412, 752 Google Scholar
Kraeft, W.D., Kremp, D., Ebeling, W., and Röpke, G., 1986, Quantum Statistics of Charged Particle Systems, (Plenum Press, New York)CrossRefGoogle Scholar
Krasnikov, Yu.G., and Kucherenko, V.I., 1978, Teplofiz. Vys. Temp. 16, 43 Google Scholar
Krasnikov, Yu.G., 1977, Sov. Phys. JETP 46, 271 Google Scholar
Larkin, A.L., 1960, Sov. Phys. JETP 11, 1363 Google Scholar
Levinson, N., 1949, Danshe Mat. Fys. Medd, No. 25 Google Scholar
Mayer, J.E., 1950, J. Chem. Phys. 18, 1426 Google Scholar
McChesney, M., 1964, Can. J. Phys. 42, 2473 CrossRefGoogle Scholar
Pisano, C., and McKellar, B.H.J., 1989, Phys. Rev. A40, 6597 CrossRefGoogle Scholar
Rogers, F.J., 1974, Phys. Rev. A1O, 2441 Google Scholar
Rogers, F.J., 1977, Phys. Lett. 61A, 358 CrossRefGoogle Scholar
Rogers, F.J., 1979, Phys. Rev. A19, 375 CrossRefGoogle Scholar
Rogers, F.J., 1981, Phys. Rev. A24, 1531 CrossRefGoogle Scholar
Rogers, F.J., 1984, Phys. Rev. A29, 868 CrossRefGoogle Scholar
Rogers, F.J., 1986, Ap. J. 310, 723 CrossRefGoogle Scholar
Rogers, F.J., 1990, Ap. J 352, 689 CrossRefGoogle Scholar
Rogers, F.J., 1991, in High Pressure Equations Of State: Theory and Applications, ed. Eliezer, S. & Ricci, R.A. (North Holland, New York, 1991)Google Scholar
Rogers, F.J. and DeWitt, H.E., 1973, Phys. Rev. 8, 1061 CrossRefGoogle Scholar
Rogers, F.J., Graboske, H.C., and DeWitt, H.E., 1971, Phys. Lett. 34A, 127 CrossRefGoogle Scholar
Rogers, F.J. and Iglesias, C.A., 1991, ApJS 79, 507 Google Scholar
Rogers, F.J. and Iglesias, C.A., 1993, A.S.P. Conf. Ser., V42, Ed. Brown, Timothy M. Google Scholar
Saha, M., 1920, Phil. Mag. 40, 472 Google Scholar
Saumon, D., and Chabrier, G., 1991, Phys. Rev. A44, 5122 CrossRefGoogle Scholar
Saumon, D., 1992, Phys. Rev. A46, 2084 CrossRefGoogle Scholar
Sevastyanenko, V., 1985, Beitr Plasmaphys. 25, 151 Google Scholar
Simon, N.R., 1982, ApJ 269, L87 Google Scholar
Slattery, W.L., Dooien, G.D., and DeWitt, H.E., 1982, Phys. Rev. A26, 225 Google Scholar
Swenson, F.J., and Rogers, F.J., 1994, (in preparation)Google Scholar
Swenson, F.J., VandenBerg, D.A., Alexander, D.R., and Irwin, A., 1994, (in preparation)Google Scholar
Uhlenbeck, G.E., and Beth, E., 1936, Physica 3, 729 CrossRefGoogle Scholar
Wood, R.H., Lilley, T.H., and Thompson, , 1978, J. Chem. Soc. Far. Trans. 174, 1301 Google Scholar