No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
We discuss problems related to the electronic and ionic structure of fluid Hydrogen, for equation of state calculations in the domain where a ”plasma phase transition” (PPT) may occur. It is argued that the ionization of an electron bound to a particular nucleus proceeds through a progressive derealization involving ”hopping” electron states (i.e. cluster states). A description of the plasma containing pseudoatoms, pseudomolecules and free electrons is proposed. The PPT, if it exists, might be a mobility edge transition across a percolation threshold. It is shown how the effect of electron density, field-particle distributions and temperature on the binding energy of these pseudoatoms and pseudomolecules, can be included. Finally the abundances of these objects is determined by a minimization which allows the self-consistent optimization of ionic as well as electronic parameters contributing to the total free energy.