Published online by Cambridge University Press: 12 April 2016
The current status of observations of energetic particles in the “local bubble” is reviewed. This includes primarily “direct” measurements of cosmic rays made in the Solar System, but also the “remote sensing” made possible by observing cosmic ray produced γ-rays in the nearby interstellar clouds. Since the energetic events responsible for the formation of our local bubble may also have produced copious amounts of cosmic rays, fossil records are examined to determine whether there is a corresponding signature. The observations show that: 1) the cosmic ray (proton) intensity is fairly homogeneous throughout the local bubble and its adjacent interstellar clouds, 2) there is some evidence for a “recent” local cosmic ray injection about 40,000 years ago, 3) on longer time scales (a few million years) the cosmic ray intensity was constant within a factor two, 4) there is apparently some “activity” in the Orion cloud, as evidenced by low energy γ-ray signatures, and 5) there are two unexplained observations – the variations in the energy spectra, in particular the significantly flatter spectrum of heavy cosmic rays (Fe) and the matter path length variation, which yields consistently larger path lengths for the lighter elements (H, He). It is suggested that these observations are compatible with two cosmic ray populations – an older one in equilibrium with losses from the galaxy and a younger one which is not yet strongly affected by losses. The latter could be a cosmic ray signature of the formation of the local bubble.