Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T00:38:36.907Z Has data issue: false hasContentIssue false

Effect of mass gain on stellar evolution

Published online by Cambridge University Press:  12 April 2016

R. Ebert
Affiliation:
Institut für Theoretische Physik der Universität Würzburg, F.R.G.
H. Zinnecker
Affiliation:
Max-Planck-Institut für Physik und Astrophysik, Institut für Extraterrestrische Physik Garching, F.R.G.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we present a fully hydrodynamical treatment of the stationary isothermal accretion problem onto a moving gravitating point mass. The derivation is purely analytical. We find that the accretion rate is more than a factor of 50 higher than the accretion rate derived from the partially non-hydrodynamical treatment by Hoyle and Lyttleton (1939) or Bondi and Hoyle (1944). This result may have some bearing on the evolutionary tracks of young pre-Main Sequence stars still embedded in their parent protocluster cloud. We discuss the work by Federova (1979) who investigated the pre-Main Sequence evolution of degenerate low mass ‘stars’ with strong accretion of protocluster cloud material. We suggest that the stars which lie below the Main Sequence in young clusters could strongly accrete matter at the pre-Main Sequence stage.

Type
Session VI - Mass Loss and Stellar Evolution: Low Mass Stars
Copyright
Copyright © Reidel 1981

References

Bash, R.N., Green, E., andPeters, W.L. (1977), Ap. J. 217, 464.Google Scholar
Bondi, H. (1952), M.N.R.A.S. 112, 195.Google Scholar
Bondi, H. and Hoyle, F. (1944), M.N.R.A.S. 104, 273.Google Scholar
Castellani, V. and Panagia, N. (1972) Ap. & Sp. Sci. 15, 462.Google Scholar
Chia, T.T.(1978), M.N.R.A.S. 185, 561.Google Scholar
Chia, T.T. (1979), M.N.R.A.S. 188, 75.Google Scholar
Dodd, K.N. (1953), Proc. Cambridge Phil.Soc. 49, 486.CrossRefGoogle Scholar
Dodd, K.N. and McCrea, W.H. (1952), M.N.R.A.S. 112, 205.Google Scholar
Ebert, R. (1952), Diplomarbeit, Univers. GöttingenGoogle Scholar
Ebert, R., von Hoerner, S., and Temesvary, S. (1960), Die Entstehung von Sternen durch Kondensation diffuser Materie, Springer-Verlag, Berlin, p. 184.Google Scholar
Fahr, H.J. (1980), Mitt. Astron. Ges. 47, 233 (in German).Google Scholar
Federova, A.V. (1979), Nauchnije Informatsii 46, 22 (in Russian).Google Scholar
Herbig, G.H.(1977), Ap.J. 214, 747.Google Scholar
Hoyle, F. and Lyttleton, R.A. (1939), Proc. Cambr.Phil.Soc. 35, 405.Google Scholar
Hunt, R. (1971), M.N.R.A.S. 154, 141.Google Scholar
Hunt, R. (1979), M.N.R.A.S. 188, 83.Google Scholar
Kumar, S. (1963), AP. J. 137, 1121.Google Scholar
McCrea, W.H. (1953), M.N.R.A.S. 113, 162.Google Scholar
Miller, G.E. and Scalo, J.M. (1978), P.A.S.P. 90, 506.Google Scholar
Norman, C. and Silk, J. (1980), Ap. J. 238, 158.Google Scholar
Penston, M.V., Mann, M.F. StJ., , and Ward, M.J. (1976), M.N.R.A.S. 174, 449.Google Scholar
Scalo, J.M. (1978), Protostars and Planets, University of Arizona Press, ed. Gehrels, T., p. 265.Google Scholar
Spiegel, E. (1970), Interstellar Gas Dynamics, IAU-Symp. N° 39, ed. H. Habing, p. 201.Google Scholar
Spitzer, L. (1978), Physical Processes in the Interstellar Medium, Wiley, New York, p. 275.Google Scholar
Van den Bergh, S. (1961), Ap. J. 134, 553.Google Scholar
Zinnecker, H.(1980), Ph.D. Thesis, in preparation.Google Scholar