Published online by Cambridge University Press: 12 April 2016
A fourth-order polynomial method for the integration of N-body systems is described in detail together with the computational algorithm. Most particles are treated efficiently by an individual time-step scheme but the calculation of close encounters and persistent binary orbits is rather time-consuming and is best performed by special techniques. A discussion is given of the Kustaanheimo-Stiefel regularization procedure which is used to integrate dominant two-body encounters as well as close binaries. Suitable decision-making parameters are introduced and a simple method is developed for regularizing an arbitrary number of simultaneous two-body encounters.