Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T08:52:49.871Z Has data issue: false hasContentIssue false

Detection of Ordered and Chaotic Motion using The Dynamical Spectra

Published online by Cambridge University Press:  12 April 2016

N. Voglis
Affiliation:
Department of Astronomy, University of Athens
G. Contopoulos
Affiliation:
Research Center for Astronomy, Academy of Athens Department of Astronomy, University of Athens
C. Efthymiopoulos
Affiliation:
Research Center for Astronomy, Academy of Athens Department of Astronomy, University of Athens

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two simple and efficient numerical methods to explore the phase space structure are presented, based on the properties of the “dynamical spectra”. 1) We calculate a “spectral distance” D of the dynamical spectra for two different initial deviation vectors. D → 0 in the case of chaotic orbits, while Dconst ≠ 0 in the case of ordered orbits. This method is by orders of magnitude faster than the method of the Lyapunov Characteristic Number (LCN). 2) We define a sensitive indicator called ROTOR (ROtational TOri Recongnizer) for 2D maps. The ROTOR remains zero in time on a rotational torus, while it tends to infinity at a rate ∝ N = number of iterations, in any case other than a rotational torus. We use this method to locate the last KAM torus of an island of stability, as well as the most important cantori causing stickiness near it.

Type
Analytical and Numerical Tools
Copyright
Copyright © Kluwer 1999

References

Arneodo, A., Grasseau, G., Holschneider, M.: 1988, Phys. Rev. Lett., 61, 2281.CrossRefGoogle Scholar
Bendjoya, P. and Slezak, E.: 1993, Cel. Mech. Dyn. Astr., 56, 231.Google Scholar
Contopoulos, G., and Voglis, N.: 1996, Cel. Mech. Dyn. Astr., 64, 1.CrossRefGoogle Scholar
Contopoulos, G., and Voglis, N.: 1997, Astron. Astrophys., 317, 73.Google Scholar
Efthymiopoulos, C., Contopoulos, G., Voglis, N.. and Dvorak, R.: 1997, J. Phys., A 30, 8167.Google Scholar
Foster, G.: 1995, Astron. J., 109, 1889.Google Scholar
Foster, G.: 1996, Astron. J., 111, 541.CrossRefGoogle Scholar
Froeschlé, C., Froeschlé, Ch., and Lohinger, E.: 1993, Cel. Mech. Dyn. Astron., 56, 307.Google Scholar
Froeschlé, C., Lega, E. and Gonczi, R.: 1997, Cel. Mech. Dyn. Astron., 67, 41.Google Scholar
Fujisaka, H.: 1983, Prog. Theor. Phys., 70, 1264.Google Scholar
Gallardo, T. and Ferraz-Mello, S.: 1997, Astron. J., 113, 863.CrossRefGoogle Scholar
Laskar, J.: 1990, Icarus 88, 266.CrossRefGoogle Scholar
Laskar, J., Froeschlé, C. and Celletti, A.: 1993, Physica, D56, 253.Google Scholar
Lega, E. and Froeschlé, C.: 1996, Physica, D95, 97.Google Scholar
Michtohenko, T.A. and Ferraz-Mello, S.: 1995 Astron. Astrophys., 303, 945.Google Scholar
Michtchenko, T.A. and Nesvorny, D.: 1996, Astron. Astrophys., 313, 674.Google Scholar
Nicolis, J.S., Meyer-Rress, G., and Haubs, G.: 1983, Z.Naturfosch., 38a, 1157.CrossRefGoogle Scholar
Voglis, N.: 1996, Human Capital and Mobility Workshop, Santorini, Greece (oral presentation).Google Scholar
Voglis, N.. and Contopoulos, G.: 1994, J. Phys., A 27, 4899.Google Scholar
Voglis, N.. and Efthymiopoulos, C.: 1998, J. Phys., A 31, 2913.Google Scholar
Voglis, N., Contopoulos, G., and Efthymiopoulos, C.: 1998, Phys. Rev., E 57, 372.CrossRefGoogle Scholar