Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T03:38:39.711Z Has data issue: false hasContentIssue false

Debris from Comets: The Evolution of Meteor Streams

Published online by Cambridge University Press:  12 April 2016

Bruce A. Mcintosh*
Affiliation:
HerzbergInstitute of Astrophysics National Research Council Canada Ottawa, CanadaK1A 0R6

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of meteor streams is controlled basically by: (a) the initial velocities with which the particles were ejected from the parent body; (b) gravitational perturbations by the planets; (c) radiation forces; and (d) collisions. This review focuses mainly on recent numerical modelling dealing with (b) and (a).

Ejection velocities spread the particles around the orbit, closing the ring in a few tens of revolutions. The greater ejection velocities of smaller particles cause more rapid dispersion both around the orbit and in the cross section.

A determination of the effects of gravitational perturbations must take into account the distributed properties of the stream. The stream’s evolution is dependent on the short-term impulse nature of planetary perturbations, as well as on long-term secular effects. The combined effects produce complex stream cross-sections as in the ribbon-like form of the Halley stream (Orionid and η Aquarid showers) or as in the changes in the annual position of peak shower activity shown by the Quadrantids. Perturbations may cause the orbit of a parent body to sweep rapidly across the orbit of the Earth. But the associated particle stream may not be lost as a meteor shower because it tends to become dispersed in a manner that ensures a continuing supply of particles in Earth-crossing orbits. The nodes of the observed meteoroid orbits may show very little motion compared with the rapid motion of the nodes of the orbit of the parent object.

Radiation effects contribute to size separation of particles. Very small particles are blown out of the stream or spiral in toward the sun because of Poynting–Robertson drag. Older meteor streams usually show a predominance of large particles.

Type
Section III: Comets, Origins, and Evolution
Copyright
Copyright © Kluwer 1991

References

Babadzhanov, P.B., and Obrubov, Yu.V. (1980) ‘Evolution of orbits and intersection conditions with the Earth of the Geminid and Quadrantid meteor streams’, in Halliday, I. and McIntosh, B.A. (eds.), Solid Particles in the Solar System, D. Reidel Pub., Dordrecht, Holland, 157162.Google Scholar
Babadzhanov, P.B., and Obrubov, Yu.V. (1989) ‘Dynamics and spacial shape of short-period meteoroid streams’, in McNally, D. (ed.), Highlights of Astronomy, Vol 8, Kluwer Academic Pub., Dordrecht, Holland, 287293.Google Scholar
Belkovich, O.I., and Ryabova, G.O. (1987) ‘Some models of the Geminids meteor stream formation’, in Roper, R. (ed.), ICSU, Middle Atmosphere Program. Handbook for MAP 25, 344350.Google Scholar
Burns, J.A., Lamy, P.L., and Soter, S. (1979) ‘Radiation forces on small particles in the solar system’, Icarus 40, 148.Google Scholar
Carusi, A., Kresák, L., Perozzi, E., and Valsecchi, G.B. (1987) ‘Long-term resonances and orbital evolutions of Halley-type comets’, in Ceplecha, Z. and Pecina, P. (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 2932.Google Scholar
Carusi, A., Kresák, L., Perozzi, E., and Valsecchi, G.B. (1988) ‘On the past orbital history of comet P/Halley’, Celestial Mechanics 43, 319322.Google Scholar
Cevolani, G., and Hajduk, A. (1987) ‘Activity of the meteoric complex of comet Halley’, in Ceplecha, Z. and Pecina, P. (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 179182.Google Scholar
Clifton, K.S. (1973) ‘Television studies of faint meteors’, J. Geophys. Res. 78, 65116521.Google Scholar
Clube, S.V.M. (1987) ‘The origin of dust in the Solar System’, Phil. Trans. R. Soc. Lond. A 323, 421436.Google Scholar
Clube, S.V.M., and Napier, W.M. (1984) ‘The microstructure of terrestrial catastrophism’, Mon. Not. R. Astr. Soc. 211, 953968.CrossRefGoogle Scholar
Cook, A.F. (1973) ‘A working list of meteor streams’, Evolutionary and Physical Properties of Meteoroids, NASA SP-319, 183191.Google Scholar
Drummond, J.D. (1981a) ‘A test of comet and meteor shower associations’, Icarus 45, 545557.Google Scholar
Drummond, J.D. (1981b) ‘Earth-orbit-approaching comets and their radiants’, Icarus 47, 500517.Google Scholar
Dohnanyi, J.S. (1970) ‘On the origin and distribution of meteoroids’, J. Geophys. Res. 75, 34683493.Google Scholar
Duffy, A.G., Hawkes, R.L., and Jones, J. (1987) ‘The determination of shower meteor parameters from single station observations’, Mon. Not. R. Astr. Soc. 228, 5575.Google Scholar
Fox, K. (1986) ‘The effects of planetary perturbations on observations of meteor streams’, in Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Asteroids Comets Meteors II, Uppsala University, 521525.Google Scholar
Fox, K., Williams, I.P., and Hughes, D.W. (1982) ‘The evolution of the orbit of the Geminid meteor stream’, Mon. Not. R. Astr. Soc. 199, 313324.CrossRefGoogle Scholar
Fox, K., Williams, I.P., and Hughes, D.W. (1983) ‘The rate profile of the Geminid meteor shower’, Mon. Not. R. Astr. Soc. 205, 11551169.CrossRefGoogle Scholar
Froeschlé, C., and Scholl, H. (1986) ‘Numerical investigations on a possible gravitational breaking of the Quadrantid meteor stream’, in Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Asteroids Comets Meteors II, Uppsala University, 555558.Google Scholar
Froeschlé, C., and Scholl, H. (1987) ‘Resonance intermittance causes the gravitational splitting of meteor streams’, in Ceplecha, Z. and Pecina, P. (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 151155.Google Scholar
Grün, E., Zook, H.A., Fechtig, H., and Giese, R.H. (1985) ‘Collisional balance of the meteoritic complex’, Icarus 62, 244272.CrossRefGoogle Scholar
Gustafson, B.A.S., and Misconi, N.Y. (1987) ‘Interplanetary dust dynamics. II Poynting–Robertson drag and planetary perturbations on cometary dust’, Icarus 72, 568581.CrossRefGoogle Scholar
Hajduk, A. (1980) ‘The core of the meteor stream associated with comet Halley’, in Halliday, I. and McIntosh, B.A. (eds.), Solid Particles in the Solar System, D. Reidel Pub., Dordrecht, Holland, 149152.Google Scholar
Hajduk, A. (1982) ‘The total mass and structure of the meteor stream associated with comet Halley’, in Fricke, W. and Teleki, G. (eds.), Sun and Planetary Systems, D. Reidel Pub., Dordrecht, Holland, 335336.Google Scholar
Hajduk, A. (1987) ‘Meteoroids from comet Halley. The comet’s mass production and age’, Astron. Astrophys. 187, 925927.Google Scholar
Hajduk, A., and Kapišinský, I. (1987) ‘The evolution and mass distribution of cometary particles’, ESA SP-278, 441444.Google Scholar
Hajduk, A., McIntosh, B.A., and Šimek, M. (1974) ‘The Geminid meteor stream’, Bull. Astron. Inst. Czech. 25, 305313.Google Scholar
Halliday, I. (1988) ‘Geminid fireballs and the peculiar asteroid 3200 Phaethon’, Icarus 76, 279294.CrossRefGoogle Scholar
Hamid, S.E., and Youssef, M.N. (1963) ‘A short note on the origin and age of the Quadrantids’, Smithsonian Contr. to Astrophys. 7, 309311.Google Scholar
Hartmann, W.K., Tholen, D.J., and Cruikshank, D.P. (1987) ‘The relation ship of active comets, “extinct” comets, and dark asteroids’, Icarus 69, 3350.Google Scholar
Hasegawa, I. (1979) ‘Orbits of ancient and medieval cometsPub. Astron. Soc. Japan 31, 257270.Google Scholar
Hawkes, R.L., and Jones, J. (1975) ‘Television observations of faint meteors—I. Mass distribution and diurnal rate variation’, Mon. Not. R. Astr. Soc. 170, 363377.Google Scholar
Hawkins, G.S., and Southworth, R.B. (1958) ‘The regression of the node of the Quadrantids’, Smithsonian Contr. to Astrophys. 3, 1.CrossRefGoogle Scholar
Herschel, A.S. (1875) Report on Meteors to the British Association.Google Scholar
Hindley, K.B. (1970) ‘Meteor notes’, J. Brit. Astron. Assn. 80, 476486.Google Scholar
Hughes, D.W. (1974) ‘Cosmic dust influx into the upper atmosphere during the major meteor showers’, Space Res. 14, 709713.Google Scholar
Hughes, D.W., and McBride, N.M. (1989) ‘The mass of meteoroid streams’, Mon. Not. R. Astr. Soc., 240, 7379.Google Scholar
Hughes, D.W., Williams, I.P., and Fox, K. (1981) ‘The mass segregation and nodal regression of the Quadrantid meteor stream’, Mon. Not. R. Astr. Soc. 195, 625637.Google Scholar
Hunt, J., Fox, K., and Williams, I.P. (1986) ‘Asteroidal origin for the Geminid meteor stream’, in Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Asteroids Comets Meteors II, Uppsala University, 549553.Google Scholar
Imoto, S., and Hasegawa, I. (1958) ‘Historical records of meteor showers in China, Korea and Japan’, Smithsonian Contrib. Astrophys. 2, 131144.Google Scholar
Isamutdinov, Sh.O., and Chebotarev, R.P. (1987) ‘Structural peculiarities of the Quadrantid meteor shower’, In Roper, R. (ed.), ICSU, Middle Atmosphere Program. Handbook for MAP 25, 351355.Google Scholar
Jacchia, L.G., Verniani, F., and Briggs, R.E. (1967) ‘An analysis of the atmospheric trajectories of 413 precisely reduced photographic meteors’, Smithson. Contr. Astrophys. 10, 1139.Google Scholar
Jones, J. (1985) ‘The structure of the Geminid meteor stream—I. The effect of planetary perturbations’, Mon. Not. R. Astr. Soc. 217, 523532.Google Scholar
Jones, J., and Hawkes, R.L. (1986) ‘The structure of the Geminid meteor stream—II. The combined action of the cometary ejection process and gravitational perturbations’, Mon. Not. R. Astr. Soc. 223, 479486.Google Scholar
Jones, J., and Morton, J.D. (1982) ‘High-resolution radar studies of the Geminid meteor shower’, Mon. Not. R. Astr. Soc. 200, 281291.Google Scholar
Jones, J., McIntosh, B.A., and Hawkes, R.L. (1989) ‘The age of the Orionid meteor shower’, Mon. Not. R. Astr. Soc, in press.CrossRefGoogle Scholar
Kaiser, T.R., Poole, L.M.G., and Webster, A.R. (1966) ‘Radio-echo observations of the major night-time meteor streams. I. Perseids’, Mon. Not. R. Astr. Soc. 132, 225237.CrossRefGoogle Scholar
Kresák, L. (1968) ‘Structure and evolution of meteor streams’, in Kresák, L. and Millman, P.M. (eds.), Physics and Dynamics of Meteors, D. Reidel Pub., Dordrecht, Holland, 391403.Google Scholar
Kresák, L. (1976) ‘Orbital evolution of the dust streams released from comets’, Bull. Astron. Inst. Czech. 27, 3546.Google Scholar
Kresák, L. (1978) ‘The Tunguska object: A fragment of Comet Enke?’, Bull. Astron. Inst. Czech. 29, 129134.Google Scholar
Kresák, L. (1982) ‘On the reality of comet groups and pairs’, Bull. Astron. Inst. Czech. 33, 150160.Google Scholar
Kresáková, M. (1974) ‘Meteors of periodic comet Mellish and the Geminids’, Bull. Astron. Inst. Czech. 25, 2033.Google Scholar
Kronk, G.W. (1988) METEOR SHOWERS: A Descriptive Catalog. Enslow Publishers, Hillside, N.J. Google Scholar
Lamy, Ph., and McDonnell, J.A.M. (1990) ‘Physical properties of cometary dust deduced from impact and optical measurements’, this colloquium.Google Scholar
Levin, B.Yu., Simonenko, A.N., and Sherbaum, L.M. (1972) ‘Deformation of a meteor stream caused by an approach to Jupiter’, in Chebotarev, G.A., and Kazamirchak-Polonskaya, E.I. (eds.), The Motion, Evolution of Orbits and Origin of Comets, D. Reidel Pub., Dordrecht, Holland, 455461.Google Scholar
Lindblad, B.A. (1986) ‘Structure and activity of the Perseid meteor stream from visual observations 1953-81’, in Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Asteroids Comets Meteors II, Uppsala University, 531535.Google Scholar
Lovell, A.C.B. (1954) Meteor Astronomy, Oxford University Press.Google Scholar
McCrosky, R.E. (1975) ‘Cometary debris’, In The Dusty Universe, Smithsonian Astrophys. Obs., 169-184.Google Scholar
McIntosh, B.A. (1973) ‘Origin and evolution of recent Leonid meteor showers’, Evolutionary and Physical Properties of Meteoroids, NASA SP-319, 193198.Google Scholar
McIntosh, B.A. (1990) ‘Comet P/Machholz and the Quadrantid meteor stream’, Icarus, in press.Google Scholar
McIntosh, B.A., and Hajduk, A. (1983) ‘Comet Halley meteor stream: A new model’, Mon. Not. R. Astr. Soc. 205, 931943.Google Scholar
McIntosh, B.A., and Šimek, M. (1980) ‘Geminid meteor stream: Structure from 20 years of radar observations’, Bull. Astron. Inst. Czech. 31, 3950.Google Scholar
McIntosh, B.A., and Šimek, M. (1984) ‘Quadrantid meteor shower: A quarter century of radar observations’, Bull. Astron. Inst. Czech. 35, 1428.Google Scholar
McIntosh, B.A., and Jones, J. (1988) ‘The Halley comet meteor stream: Numerical modelling of its dynamic evolution’, Mon. Not. R. Astr. Soc. 235, 673693.Google Scholar
McKinley, D.W.R. (1961) Meteor Science and Engineering, McGraw-Hill, N.Y. Google Scholar
Millman, P.M., and McIntosh, B.A. (1964) ‘Meteor radar statistics I’, Can. J. Phys. 42, 17301742.Google Scholar
Morton, J.D., and Jones, J. (1982) ‘A method for imaging radio meteor radiant distributions’, Mon. Not. R. Astr. Soc. 198, 737746.Google Scholar
Murray, C.D. (1982) ‘Nodal regression of the Quadrantid meteor stream: An analytic approach’, Icarus 49, 125134.Google Scholar
Murray, C.D., Hughes, D.W., and Williams, I.P. (1980) ‘The effect of orbital evolution on the influx of Quadrantid meteoroids’, Mon. Not. R. Astr. Soc. 190, 733741.Google Scholar
Ohtsuka, K. (1988) ‘Monocerotid meteors and periodic comet Mellish’, The Heavens 69, 199209.Google Scholar
Olmstead, D. (1834) ‘On the meteors of the 13th November, 1833’, American J. of Sci. Arts 26, 132174.Google Scholar
Olsson-Steel, D. (1987a) ‘The dispersal of meteoroid streams by radiative effects’, in Ceplecha, Z. and Pecina, P. (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 157161.Google Scholar
Olsson-Steel, D. (1987b) ‘The dispersal of the Geminid meteor stream by radiative effects’, Mon. Not. R. Astr. Soc. 226, 117.Google Scholar
Olsson-Steel, D. (1988) ‘Identification of meteoroid streams from Apollo asteroids in the Adelaide radar orbit survey’, Icarus 75, 6496.Google Scholar
Öpik, E.J. (1951) ‘Collision probabilities with the planets and the distribution of interplanetary matter’, Proc. Roy. Ir. Acad. 54, 165199.Google Scholar
Plavcova, Z. (1962) ‘Radio-echo observations of the Geminid meteor shower in 1959’, Bull. Astron. Inst. Czech. 13, 176178.Google Scholar
Plavec, M. (1950) ‘The Geminid meteor shower’, Nature 165, 362363.Google Scholar
Poole, L.M.G., and Roux, D.G. (1989) ‘Meteor radiant mapping with an all-sky radar’, Mon. Not. R. Astr. Soc. 236, 645652.Google Scholar
Porter, J.G. (1952) Comets and Meteor Streams, Chapman & Hall, London, 79.Google Scholar
Porubcan, V., and Štohl, J. (1987) ‘The meteor complex of P/Encke’, in Ceplecha, Z. and Pecina, P. (eds.), Interplanetary Matter, Pub. no. 67, Astron. Inst. Czech. Acad. Sci., 167171.Google Scholar
Sekanina, Z. (1976) ‘Statistical model of meteor streams. IV. A study of radio streams from the synoptic year’, Icarus 27, 265321.Google Scholar
Sekanina, Z. (1983) ‘The Tunguska event: No cometary signature in evidence’, Astron. J. 88, 13821414.CrossRefGoogle Scholar
Šimek, M. (1987) ‘Dynamics and evolution of the structure of five meteor streams’, Bull. Astron. Inst. Czech. 38, 8091.Google Scholar
Šimek, M., and McIntosh, B.A. (1986) ‘Perseid meteor stream: Mean flux curve from radar observations’, Bull. Astron. Inst. Czech. 37, 146155.Google Scholar
Šimek, M., and McIntosh, B.A. (1989) ‘Geminid meteor stream: Activity as a function of particle size’, Bull. Astron. Inst. Czech., in press.Google Scholar
Southworth, R.B., and Hawkins, G.S. (1963) ‘Statistics of meteor streams’, Smithsonian Contr. to Astrophys. 7, 261285.Google Scholar
Štohl, J. (1986) ‘The distribution of sporadic meteor radiants and orbits’, in Lagerkvist, C.-I., Lindblad, B.A., Lundstedt, H., and Rickman, H. (eds.), Asteroids Comets Meteors II, Uppsala University, 565574.Google Scholar
Štohl, J., and Porubčan, V. (1978) ‘Orionid meteor shower: Activity and magnitude distribution’, Contr. Astr. Obs. Skalnaté Plesso 10, 3950.Google Scholar
Voshchinnikov, N.V., and Il’in, V.B. (1983) ‘Radiation pressure on aspherical grains, compared with Poynting–Robertson effect’, Sov. Astron. Lett. 9, 101103.Google Scholar
Wetherill, G.W. (1988) ‘Where do the Apollo objects come from’, Icarus 76, 118.Google Scholar
Whipple, F.L. (1940) ‘Photographic meteor studies. III. The Taurid shower’, Proc. Amer. Phil. Soc. 15, 711745.Google Scholar
Whipple, F.L. (1951) ‘A comet model. II. Physical relations for comets and meteors’, Astrophys. J. 113, 464474 Google Scholar
Whipple, F.L. (1967) ‘On maintaining the meteor complex’, in Weinberg, J. (ed.), The Zodiacal Light and the Interplanetary Medium, NASA SP-150, 409426.Google Scholar
Whipple, F.L. (1987) ‘The cometary nucleus: Current concepts’, Astron. Astrophys. 187, 852858.Google Scholar
Whipple, F.L., and Hamid, S.E. (1952) ‘On the origin of the Taurid meteor stream’, Helwan Obs. Bulletin, No. 41, 130.Google Scholar
Williams, I.P., Murray, C.D., and Hughes, D.W. (1979) ‘The long-term orbital evolution of the Quadrantid meteor stream’, Mon. Not. R. Astr. Soc. 189, 483492.Google Scholar
Wyatt, S.P. Jr., and Whipple, F.L. (1950) ‘The Poynting-Robertson effect on meteor orbits’, Astrophysical J. 1ll, 134141.Google Scholar
Yabushita, S. (1972) ‘The dependence on inclination of the planetary perturbations of the orbits of long-period comets’, Astron. Astro phys. 20, 205214.Google Scholar
Yeomans, D.K. (1981) ‘Comet Tempel-Tuttle and the Leonid meteors’, Icarus 47, 492499.Google Scholar
Yeomans, D.K. (1986) ‘Physical interpretations from the motions of comet Halley and Giacobini-Zinner”, In Proc. 20th ESLAB Symposium on the Exploration of Halley’s Comet, ESA SP-250, 419425.Google Scholar
Yeomans, D.K., and Kiang, T. (1981) ‘The long-term motion of comet Halley’, Mon. Not. R. Astr. Soc. 197, 633646.Google Scholar
Zhuang, T.-S. (1977) ‘Ancient Chinese records of meteor showers’, Chinese Astronomy 1, 197220.Google Scholar