Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T10:16:11.019Z Has data issue: false hasContentIssue false

Crystallization of Dense Binary Ionic Mixtures Application to White Dwarf Cooling Theory

Published online by Cambridge University Press:  12 April 2016

R. Mochkovitch
Affiliation:
Institut d’Astrophysique de Paris, 75014 Paris, France
L. Segretain
Affiliation:
Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07,France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is organized in two parts. First, phase diagrams for dense binary mixtures are computed with the density functional theory (DFT). The method of calculation is reviewed and the different approximations which are used are clearly stated. The DFT is then applied to several mixtures of astrophysical interest. A comparison is made between several existing phase diagrams and the origin of some discrepancies among them is discussed. In a second part, the consequences of these phase diagrams on the cooling of white dwarfs are presented in a pedagogical way starting from the simple Mestel theory. The importance of the partial separation of carbon and oxygen at crystallisation is emphasized and the possible effect of minor species such as 22Ne or Fe is also considered. The separation of carbon and oxygen adds 1 – 2 Gyr to age of the galactic disk estimated from the white dwarf luminosity function while the delay resulting from the presence of minor species is probably negligible when the chemical evolution of the Galaxy is properly taken into account.

Type
Reviews
Copyright
Copyright © Cambridge University Press 1994

References

Abrikosov, A.A., Zh. Eksp. i Tear. Fiz. 39, 1798, (Soviet Phys. JETP 12, 1254), (1960)Google Scholar
Barrat, J.L., Thesis, university of Paris VI (1987)Google Scholar
Barrat, J.L., Europhys. Lett. 3, 523, (1987)Google Scholar
Barrat, J.L., Baus, M., Hansen, J.P., J. Phys. C 20, 1413, (1987)Google Scholar
Barrat, J.L., Hansen, J.P., Mochkovitch, R., A&A 199, L15, (1988)Google Scholar
Baus, M., Colot, J.L., Mol. Phys. 55, 653, (1985); Baus, M., J. Stat. Phys., 48, 1129,(1987)Google Scholar
Baus, M., Hansen, J.P., Phys. Rep. 59, 1, (1980)Google Scholar
Brami, F., Hansen, J.P., Joly, B., Physica A 95, 505, (1979)Google Scholar
Brush, S.G., Sahlin, H.L., Teller, E., J. Chem. Phys. 45, 2102, (1966)CrossRefGoogle Scholar
Chabrier, G., Ashcroft, N.W., Phys. Rev. A 42, 2284, (1990)Google Scholar
D’Antona, F., Mazzitelli, I., A&A, 74, 161, (1979)Google Scholar
D’Antona, F., Mazzitelli, I., Ann. Rev. Astron. Astrophys. J., 28, 139, (1990)Google Scholar
DeWitt, H.E, Slaterry, W.L., (1993) Private communication Google Scholar
DeWitt, H.E, Slattery, W.L., Yang, J., The international conference on the physics of strongly coupled plasmas, (1993), in pressGoogle Scholar
Dubin, D.H.E., Phys. Rev. A 42, 4972, (1990)Google Scholar
Dyson, F., Ann. Phys. 63, 1, (1971)Google Scholar
Farouki, R.T., Hamaguchi, S., Phys. Rev. E 47, 4330, (1993)Google Scholar
Fontaine, G., Van Horn, H.M., Ap. J. Suppl., 31, 467, (1976)Google Scholar
Hansen, J.P., Phys. Rev. A 8, 3096, (1973)Google Scholar
Hansen, J.P., MacDonald, I.R., Theory of simple liquids, (Academic Press), (1976,1989)Google Scholar
Honenberg, P., Kohn, W., Phys. Rev., 136, B 864, (1964)Google Scholar
Iben, I. Jr., Tutukov, A., Ap.J., 282, 615, (1984)Google Scholar
Ichimaru, S., Iyetomi, H., Tanaka, S., Phys. Rep. 149, 91, (1987)CrossRefGoogle Scholar
Ichimaru, S., Iyetomi, H., Ogata, S., ApJ 334, 17, (1988)Google Scholar
Iyetomi, H., Ichimaru, S., Phys. Rev. B 38, 6761, (1988)Google Scholar
Kirshnitz, D.A., Zh. Eksp. i Teor. Fiz. 38, 503, (Soviet Phys. JETP 11, 365), (1960)Google Scholar
Lamb, D.Q., Van Horn, H.M., Ap.J. 200, 306, (1975)CrossRefGoogle Scholar
Landau, L.D., Lifshitz, E.M., Statistical Physics, (London: Pergamon) (1958)Google Scholar
Likos, C.N., Aschroft, N.W., Phys. Rev. Lett. 69, 316, (1992)Google Scholar
Mestel, L., M.N.R.A.S., 112, 583, (1952)Google Scholar
Mestel, L., Ruderman, M.A., M.N.R.A.S., 136, 27, (1967)Google Scholar
Mochkovitch, R., A&A, 122, 212, (1983)Google Scholar
Mazzitelli, I., D’Antona, F., Ap.J., 308, 706, (1986)Google Scholar
Ogata, S., Ichimaru, S., Phys. Rev. A 36, 5451, (1987)Google Scholar
Ogata, S., Iyetomi, H., Ichimaru, S., Van Horn, H.M. Phys. Rev. E 48, 1344, (1993)Google Scholar
Parrinello, M., Tosi, M.P., Chem. Phys. Lett. 64, 579, (1979)CrossRefGoogle Scholar
Ramakrisnan, T.V., Yussouf, M., Phys. Rev. B 19, 2775, (1979)Google Scholar
Rovere, M., Tosi, M., J.Phys. C, 18, 3345, (1985)Google Scholar
Salpeter, E.E., Ap.J. 134, 669, (1961)Google Scholar
Segretain, L., Chabrier, G., A&A 271, 13, (1993)Google Scholar
Singh, Y., Phys. Rep. 207, 351, (1991)Google Scholar
Stevenson, D.J., J. Physique 41, C261, (1980)Google Scholar
Stringfellow, G.S., DeWitt, H.E., Slaterry, W.L., Phys. Rev. A 41, 1105, (1990)Google Scholar
Tarazona, P., Mol. Phys. 52, 81, (1984)Google Scholar
Van Horn, H.M., Ap.J., 151, 227, (1968)Google Scholar
Wood, M. Ap.J., 386, 539, (1992)Google Scholar
Xu, , Van Horn, H.M., Ap.J., 387, 662, (1992)Google Scholar