Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T03:17:32.097Z Has data issue: false hasContentIssue false

Core-Collapse Supernovae at the Threshold

Published online by Cambridge University Press:  19 September 2016

H.-Th. Janka
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany;[email protected]
R. Buras
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany;[email protected]
K. Kifonidis
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany;[email protected]
A. Marek
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany;[email protected]
M. Rampp
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany;[email protected]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent progress in modeling core-collapse supernovae is summarized and set in perspective. Two-dimensional simulations with state-of-the-art treatment of neutrino transport still fail to produce powerful explosions, but evidence is presented that they are very close to a success.

Type
Part IV Supernovae: Models
Copyright
Copyright © Springer-Verlag 2005

References

1. Bruenn, S.W.: Astrophys. J. Suppl. 58, 771 (1985)Google Scholar
2. Bruenn, S.W.: “Numerical simulations of core collapse supernovae.” In: Nuclear Physics in the Universe, ed. Guidry, M.W., Strayer, M.R. (IOP: Bristol, 1993) pp. 3150 Google Scholar
3. Bruenn, S.W., Dineva, T.: Astrophys. J. Lett. 458 L71 (1996)Google Scholar
4. Buras, R., Rampp, M., Janka, H.-Th., Kifonidis, K.: Phys. Rev. Lett. 90, 241101 (2003)Google Scholar
5. Burrows, A., Hayes, J., Fryxell, B.A.: Astrophys. J. 450, 830 (1995)Google Scholar
6. Fryer, C.L.: Astrophys. J. 522, 413 (1999)CrossRefGoogle Scholar
7. Fryer, C.L., Heger, A.: Astrophys. J. 541, 1033 (2000)Google Scholar
8. Fryer, C.L., Warren, M.S.: Astrophys. J. Lett. 574 L65 (2002)Google Scholar
9. Heger, A., Woosley, S.E., Langer, N., Spruit, H.: astro-ph 0301374 (2003)Google Scholar
10. Herant, M., Benz, W., Colgate, S.A.: Astrophys. J. 395, 642 (1992)Google Scholar
11. Herant, M. et al.: Astrophys. J. 435, 339 (1994)Google Scholar
12. Hillebrandt, W., Wolff, R.G.: “Models of type II supernova explosions.” In: Nucleosynthesis: Challenges and New Developments, eds. Arnett, D., Truran, J.W. (Univ. of Chicago Press: Chicago, 1985) pp. 131150 Google Scholar
13. Hix, W.R. et al.: Phys. Rev. Lett. 91, 201102 (2003)Google Scholar
14. Janka, H.-Th. et al.: astro-ph 0212314 (2002)Google Scholar
15. Langanke, K. et al.: Phys. Rev. Lett. 90, 241102 (2003)Google Scholar
16. Lattimer, J.M., Swesty, F.D.: Nuc. Phys. 535, 331 (1991)Google Scholar
17. Liebendörfer, M. et al.: Phys. Rev. D 63, 3004 (2001)Google Scholar
18. Marek, A.: In: The effects of the nuclear equation of state on stellar core collapse and supernova evolution. Diploma Thesis, Technical University Munich (2003)Google Scholar
19. Mayle, R.W., Tavani, M., Wilson, J.R.: Astrophys. J. 418, 398 (1993)Google Scholar
20. Mezzacappa, A. et al.: Astrophys. J. 495, 911 (1998)Google Scholar
21. Mezzacappa, A. et al.: Phys. Rev. Lett. 86, 1935 (2001)Google Scholar
22. Rampp, M., Janka, H.-Th.: Astrophys. J. Lett. 539 L33 (2000)Google Scholar
23. Rampp, M., Janka, H.-Th.: Astron. Astrophys. 396, 361 (2002)Google Scholar
24. Shen, H., Toki, H., Oyamatsu, K., Sumiyoshi, K.: Nuc. Phys. 637, 435 (1998)Google Scholar
25. Shen, H., Toki, H., Oyamatsu, K., Sumiyoshi, K.: Prog. Theor. Phys. 100, 1013 (1998)Google Scholar
26. Thompson, T.A., Burrows, A., Pinto, P.A.: Astrophys. J. 592, 434 (2003)Google Scholar
27. Totani, T., Sato, K., Dalhed, H.E., Wilson, J.R.: Astrophys. J. 496, 216 (1998)Google Scholar
28. Wilson, J.R., Mayle, R.: Phys. Rep. 163, 63 (1988)Google Scholar
29. Wilson, J.R., Mayle, R.: Phys. Rep. 227, 97 (1993)Google Scholar
30. Woosley, S.E., Heger, A., Weaver, T.A.: Rev. Mod. Phys. 74, 1015 (2002)Google Scholar