Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T11:06:16.354Z Has data issue: false hasContentIssue false

Computer Calculation of Collision Cascades by Energetic Particles Penetrating Dust Grains

Published online by Cambridge University Press:  12 April 2016

K. Rössler
Affiliation:
Institut für Chemie 1 (Nuklearchemie) der Kernforschungsanlage Jülich GmbH, Postfach 1913 D-5170 Jülich, Federal Republic of Germany
G. Eich
Affiliation:
Institut für Chemie 1 (Nuklearchemie) der Kernforschungsanlage Jülich GmbH, Postfach 1913 D-5170 Jülich, Federal Republic of Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The penetration of energetic particles from stellar winds, cosmic rays and fast moving gas clouds in interstellar dust grains induces a variety of physical and chemical changes. Detailed information on penetration ranges, number of secondary projectiles produced by knock-on and their energy distribution is obtained from computer simulation of collision cascades with the program MARLOWE. Model targets are polycrystalline H2O-ice, NH4Cl, and SiO2, projectiles are lo2 - lo4 eV H, He, and C. Depending on the energy and the projectile/ target mass ratio up to lo2 secondary projectiles are created per primary impact with energies ranging from a few to some lo3 eV. In composite grains, condensed gases and ice mixtures the energetic secondaries can undergo hot chemical reactions leading to a series of precursors for larger organic and biomolecules.

Type
VI. Dust – Plasma Interactions
Copyright
Copyright © Reidel 1985

References

1. Ponamperuma, C. (ed.) Cosmochemistry and the Origin of Life, D. Reidel, Dordrecht, 1983 CrossRefGoogle Scholar
2. Greenberg, J.M., in Comets, Wilkening, L.L. (ed.), The University of Arizona Press, Tucson, Arizona, 1982 Google Scholar
3. Rössler, K., Jung, H.-J., Nebeling, B., Adv. Space Res., 1985, in pressGoogle Scholar
4. Stöcklin, G., Chemie heißer Atome, Verlag Chemie, Weinheim 1969 (in German); Chimie des atomes chauds, Masson et Cie, Paris 1971 (revised french version)Google Scholar
5. Maddock, A.G., Harbottle, G. (eds.), Chemical Effects of Nuclear Transformations in Inorganic Systems, North Holland, Amsterdam 1979 Google Scholar
6. Rössler, K., this issueGoogle Scholar
7. Ziegler, J.F., Handbook of Stopping Cross-Sections for Energetic Ions in All Elements, Pergamon Press, New York, 1980 CrossRefGoogle Scholar
8. Littmark, U., Ziegler, J.F., Handbook of Range Distributions for Energetic Ions in All Elements, Pergamon Press, New York, 1980Google Scholar
9. Biersack, J.P., Hackmark, L.G., Nucl. Instr. Meth. 174 (1980) 257/69CrossRefGoogle Scholar
10. Robinson, M.T., Torrens, I.M., Phys. Rev. B., 9 (1974) 5008/24Google Scholar
11. Robinson, M.T., Rössler, K., Torrens, I.M., J.Chem.Phys. 60, (1974) 680/8CrossRefGoogle Scholar
12. Rössler, K., Robinson, M.T., in Atomic Collisions in Solids, Datz, S., Appleton, B.R., Moak, C.D. (eds.), Plenum Publ. Corp., New York 1975, 1, 237/249Google Scholar
13. Oen, O.S., Robinson, M.T., J. Nucl. Mat. 76/77 (1978) 370/7Google Scholar
14. Westmeier, W., Rössler, K., Report Jül-1563, December 1978 Google Scholar
15. Rössler, K., Pross, L., Rad. Eff. 48 (1980) 207/12Google Scholar
16. Rössler, K., Uranium Recoil Reactions, in Grnelin Handbook of Inorganic Chemistry, Uranium, Suppl. Vol. A6, Springer Verlag, Berlin 1983, 135/64 (139)Google Scholar
17. Rössler, K., Manzanares, A.R., Report Jül-1924, June 1984 Google Scholar
18. Rössler, K., Eich, G., J.Chem.Phys., to be submittedGoogle Scholar