No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. In an approximation to the restricted three-body problem, Sun-Jupiter-comet/asteroid, the value of the Jacobian integral represents a parameter of conspicuous stability which can be applied to delineate the evolutionary paths of the potential parent bodies of the meteoroids in the system of conventional orbital elements. Earth-crossing orbits can be reached along three main paths by the comets, and along two by the asteroids.
The structure of meteor streams, however, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of meteor orbits, from those of faint Super-Schmidt meteors up to those of meteorite-dropping fireballs, furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.