No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
To a significant degree, the success of spacecraft missions to comets and asteroids depends upon the accuracy of the target body ephemerides. In turn, accurate ephemerides depend upon the quality of the astrometric data set used in determining the object’s orbit and the accuracy with which the target body’s motion can be modelled. Using error analyses studies of the target bodies for the NEAR, Muses-C, Clementine 2, Stardust, and Rosetta missions, conclusions are drawn as to how to minimize target body position uncertainties at the times of encounter. In general, these uncertainties will be minimized when the object has a good number of optical observations spread over several orbital periods. If a target body lacks a lengthy data interval, its ephemeris uncertainties can be dramatically reduced with the use of radar Doppler and delay data taken when the body is relatively close to the Earth. The combination of radar and optical angle data taken at close Earth distances just before a spacecraft encounter can result in surprisingly small target body ephemeris uncertainties.