Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T16:10:29.790Z Has data issue: false hasContentIssue false

Chemical Properties of Cometary Dust and A Note on Carbon Isotopes

Published online by Cambridge University Press:  12 April 2016

Elmar K. Jessberger
Affiliation:
Max-Planck-Institut für KernphysikP.O. Box 103980 D-6900Heidelberg
Jochen Kissel
Affiliation:
Max-Planck-Institut für KernphysikP.O. Box 103980 D-6900Heidelberg

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On board the space probes Giotto and VEGAs and 2, which were sent through the coma of comet Halley, were the mass spectrometers PIA and PUMAs 1 and 2 for the in situ analysis of cometary dust. This paper summarizes the results obtained up to now, about four years after the flybys. It is sought to make the reader aware of the significance, but also of the limitations, of these unprecedented data gathered within a few hundred seconds with an innovative instrument about 1.5 x 108 km away from Earth. The first part of this paper shows how the bulk properties of the dust are derived—the main constituents CHON and silicates, the core-mantle structure, the molecular composition of the organic component, the average composition of the dust and of the whole comet, and the gas/dust ratio. The second part reviews what can safely be said about the properties of the individual grains—their similarity to a certain class of interplanetary dust particles and their distinction from others, and their density and masses. The final part of this paper shows that some cometary grains contain isotopically ultra-light carbon (12C/13C up to 5000), a finding that is significantly substantiated by reports of similar carbon isotopic composition in meteoritic graphite.

Type
Section VI: Cometary Dust
Copyright
Copyright © Kluwer 1991

References

Anders, E. (1986). ‘What can meteorites tell us about comets?’ In The Comet Nucleus Sample Return Proc. Workshop, Canterbury, U.K., 1517 July 1986, ed. Meliter, O., ESA SP-249, 3140.Google Scholar
Anders, E., and Ebihara, M. (1982). ‘Solar system abundances of the elements.’ Geochim. Cosmochim. Acta 46, 23632380.Google Scholar
Anders, E., and Grevesse, E. (1989). ‘Abundances of the elements: Meteoritic and solar.’ Geochim. Cosmochim. Acta 53, 197214.Google Scholar
Antz, Ch. (1988). ‘Kombinierte chemische Multielementanalyse interplanetarer Staubteilchen mit Hilfe der Protonenmikrosonde und Synchrotron-Röntgen-Fluoreszenz,’ Diplomarbeit, Max-Planck-Institut für Kernphysik und Universität, Heidelberg, F.R.G., 88.Google Scholar
Antz, Ch., Bavdaz, M., Jessberger, E.K., Knöchel, A., and Wallenwein R. (1987). ‘Chemical analysis of interplanetary dust particles with synchrotron radiation.’ In Proc. 10th European Regional Astronomy Meeting of the IAU, Praha, Czechoslovakia, Aug. 2429, 1987, eds. Ceplecha, Z. and Pecina, P., Vol. 2, 249252.Google Scholar
Ash, R.D., Arden, J.W., Grady, M.M., Wright, L.P. and Pillinger, C.T. (1988). ‘An interstellar dust component rich in 12C Nature 336. 228230.Google Scholar
Audouze, J. (1977). ‘The importance of CNO isotopes in astrophysics.’ In CNO Isotopes in Astrophysics, ed. Audouze, J., Reidel Publ., Dordrecht, Netherlands, 311.Google Scholar
Bradley, J.P. (1988). ‘Analysis of chondritic interplanetary dust thin-sections.’ Geochim. Cosmochim. Acta 52, 889900.Google Scholar
Brownlee, D.E. (1985). ‘Cosmic dust: Collection and research.’ Ann. Rev. Earth Planet. Sci. 13, 147173.Google Scholar
Brownlee, D.E., Wheelock, M.M., Temple, S., Bradley, J.P., and Kissel, J. (1987). ‘A quantitative comparison of comet Halley and carbonaceous chondrites at the submicron level.’ Lunar Planet. Sci. XVIII, The Lunar Planet. Inst., Houston, Texas, U.S.A., 133134.Google Scholar
Clark, B.C., Mason, L.W., and Kissel, J. (1986). ‘Systematics of the “CHON” and other light-element particle populations in comet Halley.’ In 20th ESLAB Symposium on the Exploration of Halley’s Comet, Heidelberg, F.R.G., 2731 October 1986, ESA SP-250, 353358.Google Scholar
Clark, B.C., Mason, L.W., and Kissel, J. (1987). ‘Coma particle type occurrences: Evidence for chemical heterogeneity in comet Halley.’ Lunar Planet. Sci. Conf. XVIII, Lunar Planet. Science Institute, Houston, Texas, U.S.A., 177178.Google Scholar
Delsemme, A.H. (1982). ‘Chemical composition of nuclei.’ In Comets, ed. Wilkening, L.L., University of Arizona Press, Tucson, Arizona, U.S.A., 85130.Google Scholar
Geiss, J. (1987). ‘Composition measurements and the history of cometary matter.’ Astron. Astrophys. 181, 859866.Google Scholar
Greenberg, J.M. (1982). ‘What are comets made of? A model based on interstellar dust.’ In Comets, ed. Wilkening, L., University of Arizona Press, Tucson, Arizona, U.S.A., 163189.Google Scholar
Grün, E., and Jessberger, E.K. (1990, in press). ‘Dust.’ In Physics of Comets in the Space Age, ed. Huebner, W., Springer Verlag, Heidelberg, F.R.G. Google Scholar
Jessberger, E.K., Kissel, J., Fechtig, H., and Krueger, F.R. (1986). ‘On the average chemical composition of cometary dust.’ In The Comet Nucleus Sample Return Proc. Workshop, Canterbury, U.K., 1517 July 1986, ed. Meliter, O., ESA SP-249, 2730.Google Scholar
Jessberger, E.K., and Kissel, J. (1987). ‘Bits and pieces from Halley’s comet.’ Lunar Planet. Sci. Conf. XVIII, Lunar Planet. Science Institute, Houston, Texas, U.S.A., 466467.Google Scholar
Jessberger, E.K., Kissel, J., Fechtig, H., and Krueger, F.R. (1987). ‘On the average chemical composition of cometary dust.’ In Physical Processes in Comets, Stars, and Active Galaxies, eds. Hillebrandt, W., Meyer-Hofmeister, E., and Thomas, H.C., Springer, Heidelberg, F.R.G., 2633.Google Scholar
Jessberger, E.K., Christoforidis, A., and Kissel, J. (1988). ‘Aspects of the major element composition of Halley’s dust.’ Nature 332. 691695.Google Scholar
Jessberger, E.K., Rahe, J., and Kissel, J. (1989). ‘The composition of comets.’ In Origin and Evolution of Planetary and Satellite Atmospheres, eds. Atreya, S.K., Pollak, J.B., and Matthews, M.S., University of Arizona Press, Tucson, Arizona, U.S.A., 167191.Google Scholar
Kissel, J. (1986). ‘The Giotto particulate impact analyser.’ In ESA SP-1077, 6768.Google Scholar
Kissel, J., et al. (1986a). ‘Composition of comet Halley dust particles from Vega observations.’ Nature 221, 280282.Google Scholar
Kissel, J., et al. (1986b). ‘Composition of comet Halley dust particles from Giotto observations.’ Nature 221, 336338.CrossRefGoogle Scholar
Kissel, J., and Krueger, F.R. (1987a). ‘The organic component in dust from comet Halley as measured by the PUMA mass spectrometer onboard Vega 1.’ Nature 326. 755760.CrossRefGoogle Scholar
Kissel, J., and Krueger, F.R. (1987b). ‘Ion formation by impact of fast dust particles and comparison with related techniques.’ Appl. Phys. A 42, 6985.Google Scholar
Krankowsky, D., and Eberhardt, P. (1989, in press). ‘Evidence for the composition of ices in the nucleus of comet Halley.’ In Comet Halley 1986, World-Wide Investigations, Results, and Interpretations, Ellis Horwood Ltd., Chichester, U.K.Google Scholar
Krueger, F.R., and Kissel, J. (1987). ‘The chemical composition of the dust of comet P/Halley as measured by “PUMA” on board VEGA-1.’ Naturwissenschaften 74, 312316.Google Scholar
Krueger, F.R., and Kissel, J. (1989). ‘Biogenesis by cometary grains—thermodynamic aspects of self-organization.’ Origins of Life and Evol. of the Biosphere 19, 8793.Google Scholar
Krueger, F.R., Korth, A., and Kissel, J. (1990, in press). ‘The organic matter of comet P/Halley as inferred by joint gas and solid phase analysis.’ Nature.Google Scholar
Lamy, Ph., and McDonnell, J.A.M., and Pankiewicz, G.S. (1990). ‘Physical properties in cometary dust.’ In this volume.Google Scholar
Langer, W.D., Graedel, T.E., Frerking, M.A., and Armentrout, P.B. (1984). ‘Carbon and oxygen isotope fractionation in dense interstellar clouds.’ Astrophys. J. 277. 581604.Google Scholar
Langevin, Y., Kissel, J., Bertaux, J.-L., and Chassefiere, E. (1987a). ‘First statistical analysis of 5000 mass spectra of cometary grains obtained by PUMA 1 (Vega 1) and PIA (Giotto) impact ionization mass spectrometers in the compressed modes.’ Astron. Astrophys. 187, 761766.Google Scholar
Langevin, Y., Kissel, J., Bertaux, J.-L., and Chassefiere, E. (1987b). ‘Impact ionization mass spectrometry of cometary grains on board Giotto, Vega 1 and Vega 2 spacecrafts: Preliminary statistical analysis of spectra in compressed modes.’ Lunar Planet. Sci. Conf. XVIII, The Lunar Planet. Inst., Houston, Texas, U.S.A., 533534.Google Scholar
Lawler, M.E., Brownlee, D.E., Temple, S., and Wheelock, M.M. (1989a). ‘Iron, magnesium, and silicon in dust from comet Halley.’ Icarus 80, 225242.Google Scholar
Lawler, M.E. (1989b, in press). ‘Mass-composition relationships in dust particles from comet Halley.’ Icarus; presented at Comets in the Post-Halley Era, Bamberg,F.R.G., April 2428, 1989.Google Scholar
Maas, D., Krueger, F.R., and Kissel, J. (1990, in press). ‘Mass and density of silicate-and CHON-type dust particles released by comet P/Halley.’ In Asteroids, Comets, and Meteors III, eds. Lagerkvist, C.-I., Rickman, H., Lindblad, , and Lindgren, M., Reprocentralen HSC, Uppsala, 12, 616.6.Google Scholar
Millman, P.M.(1977). ‘The chemical composition of cometary meteoroids.’ In Comets, Asteroids, Meteorites, ed. Delsemme, A.H., University of Toledo, Ohio, U.S.A., 127132.Google Scholar
Ming, T., Anders, E., Hoppe, P., and Zinner, E. (1989). ‘Meteoritic silicon carbide and its stellar sources; implications for galactic chemical evolution.’ Nature, 222, 351354.Google Scholar
Mukhin, L.M., Evlanov, E.N., Fomenkova, M.N., Khromov, V. N., Kissel, J., Priludski, O.F., Zubkov, B.V., and Sagdeev, R.Z. (1987). ‘Different types of dust particles in Halley’s comet.’ Lunar Planet. Sci. Conf. XVIII, The Lunar Planet. Inst., Houston, Texas, U.S.A., 674675.Google Scholar
Mukhin, L.M., Dikov, Yu. P., Evlanov, E.N., Fomenkova, M.N., Nazarov, M.A., Priludsky, O.F., Sagdeev, R.Z., and Zubkov, B.V. (1989a). ‘Possible composition of Halley comet dust (Si-poor particles) according to the data obtained by mass-spectrometer PUMA-2.’ Lunar Planet. Sci. Conf. XX, The Lunar Planet. Inst., Houston, Texas, U.S.A., 733734.Google Scholar
Mukhin, L.M., Dikov, Yu. P., Evlanov, E.N., Fomenkova, M.N., Nazarov, M.A., Priludsky, O.F., Sagdeev, R.Z., and Zubkov, B.V. (1989b). ‘Possible composition of Halley comet dust (Si-rich particles) according to the data obtained by mass-spectrometer PUMA-2.’ Lunar Planet. Sci. Conf. XX, The Lunar Planet. Inst., Houston, Texas, U.S.A., 735736.Google Scholar
Rietmeijer, F.J.M., Mukhin, L.M., Fomenkova, M.N., and Evlanov, E.N. (1989). ‘Layer silicate chemistry in P/comet Halley from PUMA-2 data.’ Lunar Planet. Sci. Conf. XX, The Lunar Planet. Inst., Houston, Texas, U.S.A., 904905.Google Scholar
Rickman, H. (1986). ‘Masses and densities of comets Halley and Kopff.’ In The Comet Nucleus Sample Return Proc. Workshop, Canterbury, U.K., 1517 July 1986, ed. Meliter, O., ESA SP-249, 195205.Google Scholar
Sagdeev, R.Z., Kissel, J., Evlanov, E.N., Mukhin, L.M., Zubkov, B.V., Priludski, O.F., and Fomenkova, M.N. (1986). ‘Elemental composition of dust component of Halley’s comet: Preliminary analysis.’ In 20th ESLAB Symposium on the Exploration of Halley’s Comet, Heidelberg, F.R.G., 2731 October 1986, ESA SP-250, Vol. III, 349352.Google Scholar
Solc, M., Vanysek, V., and Kissel, J. (1986). ‘Carbon stable isotopes in comets after encounters with P/Halley.’ In 20th ESLAB Symposium on the Exploration of Halley’s Comet, Heidelberg, F.R.G., 2731 October 1986, ESA SP-250, 373376.Google Scholar
Solc, M., Jessberger, E. K., Hsiung, P., and Kissel, J. (1987). ‘Halley dust composition.’ In Proc. 10th European Regional Astronomy Meeting of the IAU, Praha, Czechoslovakia, Aug. 2429, 1987, eds. Ceplecha, Z. and Pecina, P., Vol. 2, 4751.Google Scholar
Solc, M., Jessberger, E.K. and Kissel, J. (1989). Unpublished data.Google Scholar
Sutton, S.R., and Flynn, G.J. (1988). ‘Stratospheric particles: Synchrotron X-ray fluorescence determination of trace element contents.’ Proc. XVIII Lunar. Planet. Sci. Conf., Cambridge Univ. Press, Cambridge, Massachusetts, U.S.A., 607613.Google Scholar
van der Stap, C.C.A.H., Vis, R.D. and Verheul, H. (1986). ‘Interplanetary dust: Arguments in favour of a late stage nebular origin.’ Lunar Planet. Sci. XVII, The Lunar and Planetary Institute, Houston, Texas, U.S.A., 10131014.Google Scholar
Wäsch, R. (1986). ‘An approach to the nature of the silicatic component of the comet Halley.’ In 20th ESLAB Symposium on the Exploration of Halley’s Comet, Heidelberg, F.R.G., 2731 October 1986, ESA SP-250, 265267.Google Scholar
Wallenwein, R., Antz, Ch., Jessberger, E.K., and Traxel, K. (1987). ‘Proton microprobe analysis of interplanetary dust particles.’ In Proc. 10th European Regional Astronomy Meeting of the IAU, Praha, Czechoslovakia, Aug. 2429, 1987, eds. Ceplecha, Z. and Pecina, P., Vol. 2, 245248.Google Scholar
Wyckhoff, S., and Lindholm, E. (1989). ‘On the carbon and nitrogen isotope abundance ratios in comet Halley.’ Adv. Space Res. 9, 151155.CrossRefGoogle Scholar
Zinner, E, Wopenka, B., Amari, S., and Anders, E. (1990). ‘Interstellar graphite and other carbonaceous grains from the Murchison meteorite: Structures, composition and isotopes of C., N, and Ne.’ Lunar Planet. Sci. XXI, The Lunar and Planetary Institute, Houston, Texas, U.S.A., 12551256.Google Scholar
Zinner, E., and Epstein, S. (1987). ‘Heavy carbon in individual grains from the Murchison meteorite.’ Earth Planet. Sci. Lett. 84, 359368 (1987).Google Scholar
Zinner, E. (1989, in press). ‘Isotopie measurements with the ion microprobe.’ Proc. Workshop New Frontiers in Stable Isotope Research, USGS Bulletin, Washington, D.C., U.S.A. Google Scholar
Zolensky, M.E., Lindstrom, D.J., Thomas, K.L., Lindstrom, R.M., and Lindstrom, M.M. (1989). ‘Trace element compositions of six “chondritic” stratospheric dust particles.’ Lunar Planet. Sci. XX, The Lunar and Planetary Institute, Houston, Texas, U.S.A., 12551256.Google Scholar