Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:21:40.819Z Has data issue: false hasContentIssue false

Astrophysical consequences of the screening of nuclear reactions

Published online by Cambridge University Press:  12 April 2016

J. Isern
Affiliation:
Centre d’Estudis Avançats Blanes (CSIC), Camí de Santa Bàrbara sn, 17800 Blanes, Spain
M. Hernanz
Affiliation:
Centre d’Estudis Avançats Blanes (CSIC), Camí de Santa Bàrbara sn, 17800 Blanes, Spain

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rate of nuclear reactions depends on the influence of the surrounding particles that compose the plasma. At high densities the situation is far from being satisfactory and the influence of electron polarization has not been completely elucidated. In particular, it is shown that the possibility of an accretion induced collapse of a carbon-oxygen white dwarf instead of a supernova explosion completely depends on the screening factors and pycnonuclear rates that are adopted. Similarly, the possibility of detecting isolated neutron stars that accrete matter from the interstellar medium depends on the adopted pycnonuclear rates. Low rates allow the formation of a metastable layer that can release energy explosively and produce aγ-ray burst. Nevertheless, current rates seem to prevent such a situation.

Type
Reviews
Copyright
Copyright © Cambridge University Press 1994

References

Alastuey, A., Jancovici, B., Astrophys. J. 226, 1034 (1978)Google Scholar
Bravo, E., Isern, J., Canal, R., Labay, J., Astron. Astrophys. 124, 39 (1983)Google Scholar
Bildeten, L., Salpeter, E.E., Wasserman, I., Astroph. J. 384, 143 (1992)Google Scholar
Blaes, O., Blandford, R., Goldreich, P. and Madan, P., Astrophys. J. 343, 839 (1989)Google Scholar
Blaes, O., Blandford, R., Madan, P. and Koonin, S., Astrophys. J. 363, 612 (1990)Google Scholar
Blaes, O., Blandford, R., Madan, P. and Yan, L., Astrophys. J. 399, 634 (1992)Google Scholar
Cameron, A.G.W., Astrophys. J. 130, 916 (1959)Google Scholar
Canal, R., Isern., , in White Dwarfs and Variable Degenerate Stars IAU Colloq No l53, ed VanHorn, H.M., Weidemann, V., p. 52, Rochester NY: Univ. Rochester Press (1979)Google Scholar
Canal, R., Isern, J., Labay, J., Ann. Rev. Astron. Astrophys. 28, 183 (1990)Google Scholar
Canal, R., Schatzman, E., Astron. Astrophys. 46, 229 (1976)Google Scholar
Chabrier, G., Astrophys. J. 414, 695 (1993)Google Scholar
DeWitt, H.E., Graboske, H.C., Cooper, M.S., Astrophys. J. 181, 439 (1973)Google Scholar
Graboske, H.C., DeWitt, H.E., Grossman, A.S., Cooper, M.S., Astrophys. J. 181, 457 (1973)Google Scholar
Fushiki, I., Lamb, D.Q., Astrophys. J. 317, 368 (1987)Google Scholar
Hameury, J.M., Heyvaerts, J. and Bonazzola, S., Astron. Astrophys. 121, 259 (1983)Google Scholar
Helfer, H.L., McCrory, R., Van Horn, H.M., J. Stat. Phys 37, 577 (1984)Google Scholar
Henyey, L., L’Ecuyer, J., Astrophys. J. 156, 549 (1969)Google Scholar
Hernanz, M., Isern, J., Canal, R., Labay, J., Mochkovitch, R., Astrophys. J. 324, 331 (1988)Google Scholar
Hoyle, F. and Lyttleton, R.A., Proc. Cambridge Phil. Soc. 35, 592 (1939)Google Scholar
Ichimaru, S., Rev. Mod. Phys. 65, 255 (1973)Google Scholar
Ichimaru, S., Ogata, S., Van Horn, H.M., Astrophys. J. Letters 401, L35 (1992)Google Scholar
Isern, J., Labay, J., Hernanz, M., Canal, R., Astrophys. J. 273, 320 (1983)Google Scholar
Itoh, N., Kuwashima, F., Munakata, H., Astrophys. J. 362, 620 (1990)Google Scholar
Itoh, N., Totsuji, H., Ichimaru, S.,Astrophys. J. 220, 742 (1978)Google Scholar
Itoh, N., Totsuji, H., Ichimaru, S., DeWitt, H.E., Astrophys. J. 1079, (1979)CrossRefGoogle Scholar
Jancovici, B., J. Stat. Phys. 17, 357 (1977)Google Scholar
Miralda-Escudé, J., Haensel, P. and Paczyynski, B., Astrophys. J. 362, 572 (1990)Google Scholar
Miyaji, S., Nomoto, K., Yokoi, K., Sugimoto, D., Publ. Astron. soc. Japan 32, 303 (1980)Google Scholar
Mochkovitch, R., Astron. Astrophys. J. 122, 212 (1983)Google Scholar
Mochkovitch, R., Hansen, J.P., Phys. lett. 73A, 35 (1979)Google Scholar
Mochkovitch, R., Hernanz, M., in Nucleosynthesis and its implications on nuclear and particle physics, eds. Audouze, J. and Trân Thanh Vân, J., p. 109, Reidel: Dordretch (1986)Google Scholar
Nomoto, K., Astrophys. J. 257, 780 (1982)Google Scholar
Ogata, S., Ichimaru, S., Phys. Rev A36, 5451 (1987)Google Scholar
Ogata, S., Iyetomi, H., Ichimaru, S.,Astrophys. J. 372, 259 (1991)Google Scholar
Pines, D, Nozières, P., The theory of quantum liquids (Benjamin: New York) (1966)Google Scholar
Sahrling, M., to appear in A&A, (1994)Google Scholar
Salpeter, E.E., Aust. J. Phys. 7, 373 (1954)Google Scholar
Salpeter, E.E., Van Horn, H.M., Astrophys. J 155, 183 (1969)Google Scholar
Schatzman, E., presented at InT. Sch. Cosmol. Gravit. Erice, Italy (1974)Google Scholar
Schramm, S., Koonin, S.E., Astrophys. J. 365, 296 (1990)Google Scholar
Schramm, S., Langanke, K and Koonin, S.E., Astrophys. J. 397, 579 (1992)Google Scholar
Slattery, W.L., Doolen, G.D., DeWitt, H.E., Phys Rev A21, 2087 (1980)Google Scholar
Slattery, W.L., Doolen, G.D., DeWitt, H.E., Phys Rev A26, 2355 (1982)Google Scholar
Van den Heuvel, E.P.J., in Accretion-Driven Stellar X-Ray Sources Ed. Lewin, W.H.G., Van den Heuvel, E.P.J., p. 303, Cambridge Univ. Press ()Google Scholar
Van den Heuvel, E.P.J., in Timing Neutron Stars, ed Ogelman, H.O. Van den Heuvel, E.P.J., Dordrecht: Kluwer, p. 523 (1989)Google Scholar
Yakovlev, D.G., Shalybkov, D.A., Adv. Space. Res. 8, (2) 707 (1988)Google Scholar
Zdunik, J.L., Haensel, P., Paczynyski, B. and Miralda-Escudé, J., Astrophys. J. 384, 129 (1992)Google Scholar