Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T00:36:40.712Z Has data issue: false hasContentIssue false

An Image Reconstruction for Capella with the Steward Observatory/AFGL Intensified Video Speckle Interferometry System

Published online by Cambridge University Press:  12 April 2016

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the decade since its invention by Labeyrie in 1970, speckle interferometric techniques have evolved from simple optical processing of photographic images to high-speed digital processing of quantum-limited video data. This progress has been summarized in preceeding papers by McAlister and Weigelt in this colloquium.

The basic hardware of our system has been described in Hubbard, et al. (1979 – The basic speckle camera) and in Hege et al. (1980 – The intensified video system). These capabilities have been successfully applied to observations over a dynamic range of 16 magnitudes, from Betelgeuse (Goldberg, et al. 1982) and Capella (this paper), at one extreme, to Pluto/Charon (Hege, et al. 1981a) and the 16th magnitude resolved QSO system PG1115+080 (Hege, et al. 1981b) at the other. To accomodate this dynamic range two distinct data-recording/data-processing modes have been implemented. The Analoue mode records the image intensity for each pixel in the speckle interferogram. This is applicable for objects brighter than 7th to 10th magnitude, depending upon telescope aperture, observing band-pass and detector image scale. For fainter objects the Event mode records individual photoelectron addresses in the speckle interferogram.

Type
Research Article
Copyright
Copyright © Lowell Observatory 1983

References

1. Bonneau, D., Faucherre, M., Koechlin, L., Vakili, F. (1980) Proc. S.P.I.E., 243, 80.Google Scholar
2. Cocke, W. J. (1980) Proc. S.P.I.E., 231, 99.Google Scholar
3. Dainty, J. C. (1978) Mon. Not. R. Astr. Soc., 183, 223.Google Scholar
4. Fienup, J. R. (1978) Optics Lett., 3, 27.Google Scholar
5. Fienup, J. R. (1979) Opt. Enging., 18, 529.Google Scholar
6. Finsen, W. (1975) I.A.U. Com. 26, Circ. d’Inf. No. 66 Google Scholar
7. Goldberg, L., Hege, E. K., Hubbard, E. N., Strittmatter, P. A., Cocke, W. J. (1982) Proc. Second Cambridge Workshop on Stars, Stellar Systems and the Sun, SAO Special Reports, ed. Giampapa, M. S..Google Scholar
8. Hege, E. K., Hubbard, E. N., Strittmatter, P. A. (1980) Proc. S.P.I.E., 264, 29.Google Scholar
9. Hege, E. K., Hubbard, E. N., Drummond, J. D., Strittmatter, P. A., Worden, S. P. and Lauer, T. (1981a), Submitted to Icarus.Google Scholar
10. Hege, E. K., Hubbard, E. N., Strittmatter, P. A., Worden, S. P. (1981b), Astrophys. J. Lett., 248, L1.CrossRefGoogle Scholar
11. Hubbard, E. N., Hege, E. K., Reed, M. A., Strittmatter, P. A., Worden, S. P. (1979) Astron. J., 84, 1437.Google Scholar
12. Knox, K. T., Thompson, B. J. (1974) Astrophys. J. Lett., 193, L45.Google Scholar
13. Roddier, F. (1980) Proc. S.P.I.E., 243, 83.Google Scholar
14. Worden, S. P., Stein, M. K., Schmidt, G. D., Angel, J. R. P. (1977) Icarus, 32, 50.Google Scholar